Loading…
Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline
An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transformi...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2024-12, Vol.28 (12), p.7357-7368 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7368 |
container_issue | 12 |
container_start_page | 7357 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Baker, Cole Suarez-Mendez, Isabel Smith, Grace Marsh, Elisabeth B. Funke, Michael Mosher, John C. Maestu, Fernando Xu, Mengjia Pantazis, Dimitrios |
description | An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease. |
doi_str_mv | 10.1109/JBHI.2024.3416890 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38896525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10564006</ieee_id><sourcerecordid>3070822626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-5e1e79d27c7a5916dc98a7119181b7a5d8b963381d5816af1d088ae4b0475c323</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujUYN-ABNjevQCtt1_3SMgAgb1gMbjptsOWly22HYxJH54i4BxLvNm8puXzEPogpIOpSS_ue-Nxh1GWNyJYprynBygUxZEmzHCD_ea5vEJOnduTkLxDZceo5OIh56w5BR9j9ZLsKWptMRDK5bveLAoQSldv2Ezww-DIe5ZoWv8CP7L2A-HvcFT36j1bt-tPFjhtakdDuO4VnqlVSMqh1-1f8fTppyD9HoFuG_eav2rbkFWuoYzdDQLIJzvegu93A2e-6P25Gk47ncnbcnizLcToJDlimUyE0lOUyVzLjJKc8ppGVaKl3kaRZyqJHwoZlQRzgXEJYmzREYsaqHrre_Sms8GnC8W2kmoKlGDaVwRkYxwxlKWBpRuUWmNcxZmxdLqhbDrgpJik3uxyb3Y5F7scg83Vzv7plyA-rvYpxyAyy2gAeCfYZLGhKTRD4N7hpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070822626</pqid></control><display><type>article</type><title>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baker, Cole ; Suarez-Mendez, Isabel ; Smith, Grace ; Marsh, Elisabeth B. ; Funke, Michael ; Mosher, John C. ; Maestu, Fernando ; Xu, Mengjia ; Pantazis, Dimitrios</creator><creatorcontrib>Baker, Cole ; Suarez-Mendez, Isabel ; Smith, Grace ; Marsh, Elisabeth B. ; Funke, Michael ; Mosher, John C. ; Maestu, Fernando ; Xu, Mengjia ; Pantazis, Dimitrios</creatorcontrib><description>An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3416890</identifier><identifier>PMID: 38896525</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Brain modeling ; brain networks ; Computational modeling ; Distortion ; Geometry ; graph embedding ; hyper- bolic space ; magnetoencephalography ; Organizations ; subjective cognitive decline ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-12, Vol.28 (12), p.7357-7368</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8246-8878 ; 0000-0002-1502-3358 ; 0000-0002-3627-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10564006$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38896525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Cole</creatorcontrib><creatorcontrib>Suarez-Mendez, Isabel</creatorcontrib><creatorcontrib>Smith, Grace</creatorcontrib><creatorcontrib>Marsh, Elisabeth B.</creatorcontrib><creatorcontrib>Funke, Michael</creatorcontrib><creatorcontrib>Mosher, John C.</creatorcontrib><creatorcontrib>Maestu, Fernando</creatorcontrib><creatorcontrib>Xu, Mengjia</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><title>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.</description><subject>Alzheimer's disease</subject><subject>Brain modeling</subject><subject>brain networks</subject><subject>Computational modeling</subject><subject>Distortion</subject><subject>Geometry</subject><subject>graph embedding</subject><subject>hyper- bolic space</subject><subject>magnetoencephalography</subject><subject>Organizations</subject><subject>subjective cognitive decline</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE9PAjEQxRujUYN-ABNjevQCtt1_3SMgAgb1gMbjptsOWly22HYxJH54i4BxLvNm8puXzEPogpIOpSS_ue-Nxh1GWNyJYprynBygUxZEmzHCD_ea5vEJOnduTkLxDZceo5OIh56w5BR9j9ZLsKWptMRDK5bveLAoQSldv2Ezww-DIe5ZoWv8CP7L2A-HvcFT36j1bt-tPFjhtakdDuO4VnqlVSMqh1-1f8fTppyD9HoFuG_eav2rbkFWuoYzdDQLIJzvegu93A2e-6P25Gk47ncnbcnizLcToJDlimUyE0lOUyVzLjJKc8ppGVaKl3kaRZyqJHwoZlQRzgXEJYmzREYsaqHrre_Sms8GnC8W2kmoKlGDaVwRkYxwxlKWBpRuUWmNcxZmxdLqhbDrgpJik3uxyb3Y5F7scg83Vzv7plyA-rvYpxyAyy2gAeCfYZLGhKTRD4N7hpk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Baker, Cole</creator><creator>Suarez-Mendez, Isabel</creator><creator>Smith, Grace</creator><creator>Marsh, Elisabeth B.</creator><creator>Funke, Michael</creator><creator>Mosher, John C.</creator><creator>Maestu, Fernando</creator><creator>Xu, Mengjia</creator><creator>Pantazis, Dimitrios</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8246-8878</orcidid><orcidid>https://orcid.org/0000-0002-1502-3358</orcidid><orcidid>https://orcid.org/0000-0002-3627-8261</orcidid></search><sort><creationdate>20241201</creationdate><title>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</title><author>Baker, Cole ; Suarez-Mendez, Isabel ; Smith, Grace ; Marsh, Elisabeth B. ; Funke, Michael ; Mosher, John C. ; Maestu, Fernando ; Xu, Mengjia ; Pantazis, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-5e1e79d27c7a5916dc98a7119181b7a5d8b963381d5816af1d088ae4b0475c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Brain modeling</topic><topic>brain networks</topic><topic>Computational modeling</topic><topic>Distortion</topic><topic>Geometry</topic><topic>graph embedding</topic><topic>hyper- bolic space</topic><topic>magnetoencephalography</topic><topic>Organizations</topic><topic>subjective cognitive decline</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Cole</creatorcontrib><creatorcontrib>Suarez-Mendez, Isabel</creatorcontrib><creatorcontrib>Smith, Grace</creatorcontrib><creatorcontrib>Marsh, Elisabeth B.</creatorcontrib><creatorcontrib>Funke, Michael</creatorcontrib><creatorcontrib>Mosher, John C.</creatorcontrib><creatorcontrib>Maestu, Fernando</creatorcontrib><creatorcontrib>Xu, Mengjia</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Cole</au><au>Suarez-Mendez, Isabel</au><au>Smith, Grace</au><au>Marsh, Elisabeth B.</au><au>Funke, Michael</au><au>Mosher, John C.</au><au>Maestu, Fernando</au><au>Xu, Mengjia</au><au>Pantazis, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>7357</spage><epage>7368</epage><pages>7357-7368</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38896525</pmid><doi>10.1109/JBHI.2024.3416890</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8246-8878</orcidid><orcidid>https://orcid.org/0000-0002-1502-3358</orcidid><orcidid>https://orcid.org/0000-0002-3627-8261</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-12, Vol.28 (12), p.7357-7368 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_38896525 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Alzheimer's disease Brain modeling brain networks Computational modeling Distortion Geometry graph embedding hyper- bolic space magnetoencephalography Organizations subjective cognitive decline Training |
title | Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Graph%20Embedding%20of%20MEG%20Brain%20Networks%20to%20Study%20Brain%20Alterations%20in%20Individuals%20With%20Subjective%20Cognitive%20Decline&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Baker,%20Cole&rft.date=2024-12-01&rft.volume=28&rft.issue=12&rft.spage=7357&rft.epage=7368&rft.pages=7357-7368&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3416890&rft_dat=%3Cproquest_pubme%3E3070822626%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-5e1e79d27c7a5916dc98a7119181b7a5d8b963381d5816af1d088ae4b0475c323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070822626&rft_id=info:pmid/38896525&rft_ieee_id=10564006&rfr_iscdi=true |