Loading…

Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline

An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transformi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2024-12, Vol.28 (12), p.7357-7368
Main Authors: Baker, Cole, Suarez-Mendez, Isabel, Smith, Grace, Marsh, Elisabeth B., Funke, Michael, Mosher, John C., Maestu, Fernando, Xu, Mengjia, Pantazis, Dimitrios
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7368
container_issue 12
container_start_page 7357
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Baker, Cole
Suarez-Mendez, Isabel
Smith, Grace
Marsh, Elisabeth B.
Funke, Michael
Mosher, John C.
Maestu, Fernando
Xu, Mengjia
Pantazis, Dimitrios
description An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.
doi_str_mv 10.1109/JBHI.2024.3416890
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_38896525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10564006</ieee_id><sourcerecordid>3070822626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-5e1e79d27c7a5916dc98a7119181b7a5d8b963381d5816af1d088ae4b0475c323</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujUYN-ABNjevQCtt1_3SMgAgb1gMbjptsOWly22HYxJH54i4BxLvNm8puXzEPogpIOpSS_ue-Nxh1GWNyJYprynBygUxZEmzHCD_ea5vEJOnduTkLxDZceo5OIh56w5BR9j9ZLsKWptMRDK5bveLAoQSldv2Ezww-DIe5ZoWv8CP7L2A-HvcFT36j1bt-tPFjhtakdDuO4VnqlVSMqh1-1f8fTppyD9HoFuG_eav2rbkFWuoYzdDQLIJzvegu93A2e-6P25Gk47ncnbcnizLcToJDlimUyE0lOUyVzLjJKc8ppGVaKl3kaRZyqJHwoZlQRzgXEJYmzREYsaqHrre_Sms8GnC8W2kmoKlGDaVwRkYxwxlKWBpRuUWmNcxZmxdLqhbDrgpJik3uxyb3Y5F7scg83Vzv7plyA-rvYpxyAyy2gAeCfYZLGhKTRD4N7hpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070822626</pqid></control><display><type>article</type><title>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baker, Cole ; Suarez-Mendez, Isabel ; Smith, Grace ; Marsh, Elisabeth B. ; Funke, Michael ; Mosher, John C. ; Maestu, Fernando ; Xu, Mengjia ; Pantazis, Dimitrios</creator><creatorcontrib>Baker, Cole ; Suarez-Mendez, Isabel ; Smith, Grace ; Marsh, Elisabeth B. ; Funke, Michael ; Mosher, John C. ; Maestu, Fernando ; Xu, Mengjia ; Pantazis, Dimitrios</creatorcontrib><description>An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3416890</identifier><identifier>PMID: 38896525</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Alzheimer's disease ; Brain modeling ; brain networks ; Computational modeling ; Distortion ; Geometry ; graph embedding ; hyper- bolic space ; magnetoencephalography ; Organizations ; subjective cognitive decline ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-12, Vol.28 (12), p.7357-7368</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8246-8878 ; 0000-0002-1502-3358 ; 0000-0002-3627-8261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10564006$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38896525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Cole</creatorcontrib><creatorcontrib>Suarez-Mendez, Isabel</creatorcontrib><creatorcontrib>Smith, Grace</creatorcontrib><creatorcontrib>Marsh, Elisabeth B.</creatorcontrib><creatorcontrib>Funke, Michael</creatorcontrib><creatorcontrib>Mosher, John C.</creatorcontrib><creatorcontrib>Maestu, Fernando</creatorcontrib><creatorcontrib>Xu, Mengjia</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><title>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.</description><subject>Alzheimer's disease</subject><subject>Brain modeling</subject><subject>brain networks</subject><subject>Computational modeling</subject><subject>Distortion</subject><subject>Geometry</subject><subject>graph embedding</subject><subject>hyper- bolic space</subject><subject>magnetoencephalography</subject><subject>Organizations</subject><subject>subjective cognitive decline</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE9PAjEQxRujUYN-ABNjevQCtt1_3SMgAgb1gMbjptsOWly22HYxJH54i4BxLvNm8puXzEPogpIOpSS_ue-Nxh1GWNyJYprynBygUxZEmzHCD_ea5vEJOnduTkLxDZceo5OIh56w5BR9j9ZLsKWptMRDK5bveLAoQSldv2Ezww-DIe5ZoWv8CP7L2A-HvcFT36j1bt-tPFjhtakdDuO4VnqlVSMqh1-1f8fTppyD9HoFuG_eav2rbkFWuoYzdDQLIJzvegu93A2e-6P25Gk47ncnbcnizLcToJDlimUyE0lOUyVzLjJKc8ppGVaKl3kaRZyqJHwoZlQRzgXEJYmzREYsaqHrre_Sms8GnC8W2kmoKlGDaVwRkYxwxlKWBpRuUWmNcxZmxdLqhbDrgpJik3uxyb3Y5F7scg83Vzv7plyA-rvYpxyAyy2gAeCfYZLGhKTRD4N7hpk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Baker, Cole</creator><creator>Suarez-Mendez, Isabel</creator><creator>Smith, Grace</creator><creator>Marsh, Elisabeth B.</creator><creator>Funke, Michael</creator><creator>Mosher, John C.</creator><creator>Maestu, Fernando</creator><creator>Xu, Mengjia</creator><creator>Pantazis, Dimitrios</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8246-8878</orcidid><orcidid>https://orcid.org/0000-0002-1502-3358</orcidid><orcidid>https://orcid.org/0000-0002-3627-8261</orcidid></search><sort><creationdate>20241201</creationdate><title>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</title><author>Baker, Cole ; Suarez-Mendez, Isabel ; Smith, Grace ; Marsh, Elisabeth B. ; Funke, Michael ; Mosher, John C. ; Maestu, Fernando ; Xu, Mengjia ; Pantazis, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-5e1e79d27c7a5916dc98a7119181b7a5d8b963381d5816af1d088ae4b0475c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alzheimer's disease</topic><topic>Brain modeling</topic><topic>brain networks</topic><topic>Computational modeling</topic><topic>Distortion</topic><topic>Geometry</topic><topic>graph embedding</topic><topic>hyper- bolic space</topic><topic>magnetoencephalography</topic><topic>Organizations</topic><topic>subjective cognitive decline</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Cole</creatorcontrib><creatorcontrib>Suarez-Mendez, Isabel</creatorcontrib><creatorcontrib>Smith, Grace</creatorcontrib><creatorcontrib>Marsh, Elisabeth B.</creatorcontrib><creatorcontrib>Funke, Michael</creatorcontrib><creatorcontrib>Mosher, John C.</creatorcontrib><creatorcontrib>Maestu, Fernando</creatorcontrib><creatorcontrib>Xu, Mengjia</creatorcontrib><creatorcontrib>Pantazis, Dimitrios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Cole</au><au>Suarez-Mendez, Isabel</au><au>Smith, Grace</au><au>Marsh, Elisabeth B.</au><au>Funke, Michael</au><au>Mosher, John C.</au><au>Maestu, Fernando</au><au>Xu, Mengjia</au><au>Pantazis, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>7357</spage><epage>7368</epage><pages>7357-7368</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>An expansive area of research focuses on discerning patterns of alterations in functional brain networks from the early stages of Alzheimer's disease, even at the subjective cognitive decline (SCD) stage. Here, we developed a novel hyperbolic MEG brain network embedding framework for transforming high-dimensional complex MEG brain networks into lower-dimensional hyperbolic representations. Using this model, we computed hyperbolic embeddings of the MEG brain networks of two distinct participant groups: individuals with SCD and healthy controls. We demonstrated that these embeddings preserve both local and global geometric information, presenting reduced distortion compared to rival models, even when brain networks are mapped into low-dimensional spaces. In addition, our findings showed that the hyperbolic embeddings encompass unique SCD-related information that improves the discriminatory power above and beyond that of connectivity features alone. Notably, we introduced a unique metric-the radius of the node embeddings-which effectively proxies the hierarchical organization of the brain. Using this metric, we identified subtle hierarchy organizational differences between the two participant groups, suggesting increased hierarchy in the dorsal attention, frontoparietal, and ventral attention subnetworks among the SCD group. Last, we assessed the correlation between these hierarchical variations and cognitive assessment scores, revealing associations with diminished performance across multiple cognitive evaluations in the SCD group. Overall, this study presents the first evaluation of hyperbolic embeddings of MEG brain networks, offering novel insights into brain organization, cognitive decline, and potential diagnostic avenues of Alzheimer's disease.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38896525</pmid><doi>10.1109/JBHI.2024.3416890</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8246-8878</orcidid><orcidid>https://orcid.org/0000-0002-1502-3358</orcidid><orcidid>https://orcid.org/0000-0002-3627-8261</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-12, Vol.28 (12), p.7357-7368
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_pubmed_primary_38896525
source IEEE Electronic Library (IEL) Journals
subjects Alzheimer's disease
Brain modeling
brain networks
Computational modeling
Distortion
Geometry
graph embedding
hyper- bolic space
magnetoencephalography
Organizations
subjective cognitive decline
Training
title Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Graph%20Embedding%20of%20MEG%20Brain%20Networks%20to%20Study%20Brain%20Alterations%20in%20Individuals%20With%20Subjective%20Cognitive%20Decline&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Baker,%20Cole&rft.date=2024-12-01&rft.volume=28&rft.issue=12&rft.spage=7357&rft.epage=7368&rft.pages=7357-7368&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3416890&rft_dat=%3Cproquest_pubme%3E3070822626%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-5e1e79d27c7a5916dc98a7119181b7a5d8b963381d5816af1d088ae4b0475c323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070822626&rft_id=info:pmid/38896525&rft_ieee_id=10564006&rfr_iscdi=true