Loading…

Study on the mechanism of Na 2 CO 3 -roasting decomposition for water leach residue

In the process of treating cerium fluorocarbon-cerium lanthanide mixed rare earth concentrates by sulfuric acid roasting method, a large amount of waste leach residue containing iron, rare earths and phosphorus produced by flood neutralization needs to be solved urgently. In this paper, sodium carbo...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2024-07, p.119655
Main Authors: Wang, Xiaosong, Bian, Xue, Huang, Yu, Qiao, Shule, Wu, Wenyuan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the process of treating cerium fluorocarbon-cerium lanthanide mixed rare earth concentrates by sulfuric acid roasting method, a large amount of waste leach residue containing iron, rare earths and phosphorus produced by flood neutralization needs to be solved urgently. In this paper, sodium carbonate roasting decomposition was used to treat the water leach residue, in which iron and rare earths were transformed into oxides, and the phosphorus was transformed into sodium phosphate. The main reactions and thermodynamic mechanisms of the roasting decomposition process were investigated by thermogravimetric analysis, phase analysis and chemical analysis. When the mass ratio of sodium carbonate to water leach residue is 1.5:1, the roasting temperature is 700 °C, and the roasting time is 1.5 h, the leaching rate of phosphorus with the roasted product reaches more than 98%. Meanwhile, the phase of the roasted product after washing mainly consists of iron oxide and rare earth oxides. The combination of sodium carbonate roasting decomposition and water leaching is effective for the treatment of water leach residue, which provides an experimental and theoretical basis for solving the problem of environmental and resource waste caused by the accumulation of a large amount of water leach residue. In addition, because sodium carbonate can achieve the separation of iron and phosphorus, this method also has certain reference value for the recovery and utilization of iron phosphate in lithium iron phosphate battery waste.
ISSN:1096-0953
DOI:10.1016/j.envres.2024.119655