Loading…

Mechanism of quantum chaos in molecular nonadiabatic electron dynamics

The quantum nuclear kinematic interactions with electrons (or nonadiabatic interactions) are the inherent driving force that possibly causes a mixture of the adiabatic electronic states in molecules. Particularly in systems whose electron wavepackets lie in a densely quasi-degenerate electronic-stat...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-08, Vol.161 (6)
Main Authors: Takatsuka, Kazuo, Arasaki, Yasuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The quantum nuclear kinematic interactions with electrons (or nonadiabatic interactions) are the inherent driving force that possibly causes a mixture of the adiabatic electronic states in molecules. Particularly in systems whose electron wavepackets lie in a densely quasi-degenerate electronic-state manifold where many-dimensional and many-state nonadiabatic interactions last continually, we have found before that those extensive mixings can lead to a quantum electronic-state chaos [K. Takatsuka and Y. Arasaki, J. Chem. Phys. 159, 074110 (2023)]. This chaos of electron dynamics is a new kind yet generic. This Communication identifies the mathematical/physical mechanism of this class of chaos by means of the collective coordinate analysis of the nonadiabatic interactions, along with the numerical applications to excited states of boron clusters. Some physical consequences of the present chaos are also discussed.
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0219345