Loading…
Synthesis and Evaluation of 99m Tc(CO) 3 Complexes with Ciprofloxacin Dithiocarbamate for Infection Imaging
The accurate diagnosis of bacterial infections remains a critical challenge in clinical practice. Traditional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) often fail to distinguish bacterial infections from sterile inflammation. Nuclear medicine, such as tech...
Saved in:
Published in: | Pharmaceutics 2024-09, Vol.16 (9) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The accurate diagnosis of bacterial infections remains a critical challenge in clinical practice. Traditional imaging modalities like computed tomography (CT) and magnetic resonance imaging (MRI) often fail to distinguish bacterial infections from sterile inflammation. Nuclear medicine, such as technetium-99m (
Tc) radiopharmaceuticals, offers a promising alternative due to its ideal characteristics.
This study explores the development of [2 + 1] mixed-ligand
Tc-labeled ciprofloxacin dithiocarbamate (Cip-DTC) complexes combined with various phosphine ligands, including triphenylphosphine (PPh
), tris(4-methoxyphenyl)phosphine (TMPP), methyl(diphenyl)phosphine (MePPh
), dimethylphenylphosphine (DMPP), and 1,3,5-triaza-7-phosphaadamantane (ADAP). The characterization of
Tc-complexes was conducted using rhenium analogs as structural models to ensure similar coordination.
Stability studies demonstrated the high integrity (97-98%) of the complexes under various conditions, including cysteine and histidine challenges. Lipophilicity studies indicated that complexes with higher logD
values (1.6-2.7) exhibited enhanced tissue penetration and prolonged circulation. Biodistribution studies in Swiss Albino mice with induced infections and aseptic inflammation revealed distinct patterns. Specifically, the complex
-[
Tc(CO)
(Cip-DTC)(PPh
)] (
) showed high infected/normal muscle ratios (4.62 at 120 min), while the complex
-[
Tc(CO)
(Cip-DTC)(TMPP)] (
) demonstrated delayed but effective targeting (infected/normal muscle ratio of 3.32 at 120 min).
These findings highlight the potential of
Tc-labeled complexes as effective radiopharmaceuticals for the differential diagnosis of bacterial infections, advancing nuclear medicine diagnostics. Future studies will focus on optimizing molecular weight, lipophilicity, and stability to further enhance the diagnostic specificity and clinical utility of these radiopharmaceuticals. |
---|---|
ISSN: | 1999-4923 1999-4923 |