Loading…

The production and separation of 161 Tb with high specific activity at the University of Utah

Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t  = 6.95 days), which undergoes beta emission and shares similar decay propertie...

Full description

Saved in:
Bibliographic Details
Published in:Applied radiation and isotopes 2024-12, Vol.214, p.111530
Main Authors: Holiski, Connor K, Bender, Aidan A, Monte, Peñafrancia F, Hennkens, Heather M, Embree, Mary F, Wang, Meng-Jen Vince, Sjoden, Glenn E, Mastren, Tara
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 111530
container_title Applied radiation and isotopes
container_volume 214
creator Holiski, Connor K
Bender, Aidan A
Monte, Peñafrancia F
Hennkens, Heather M
Embree, Mary F
Wang, Meng-Jen Vince
Sjoden, Glenn E
Mastren, Tara
description Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t  = 6.95 days), which undergoes beta emission and shares similar decay properties as Lu (FDA-approved as LUTATHERA® and PLUVICTO®). Besides beta emission, Tb also emits a significant number of conversion and Auger electrons further enhancing its therapeutic potential. Terbium-161 can be produced using nuclear reactors through an indirect neutron capture reaction, G64160dn,γG64161d→3.66min,β T65161b, from Gd targets. However, a key challenge in utilizing Tb for TRT lies in effectively separating target and product materials to attain high specific activity for radiolabeling. Here, we detail the production of no-carrier added Tb using low flux research reactors (mean thermal (
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39342764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39342764</sourcerecordid><originalsourceid>FETCH-pubmed_primary_393427643</originalsourceid><addsrcrecordid>eNqFjtsKgkAYhJcg0g6vEP8LCOsBD9dR9AB6GfGra_tH6rK7Gr59FnXd1TDDfMMsmOunSeBlKecOWxtz55xHaRasmBNmYRQkceSySy4FKN3XQ2Wp7wC7GoxQqPFj-wb82Ie8hCdZCZJuEowSFTVUAc7ISHYCtGDnmaKjUWjzTmausCi3bNngw4jdVzdsfzrmh7OnhrIV9VVpalFP19-f8G_hBc_yQEs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The production and separation of 161 Tb with high specific activity at the University of Utah</title><source>ScienceDirect Journals</source><creator>Holiski, Connor K ; Bender, Aidan A ; Monte, Peñafrancia F ; Hennkens, Heather M ; Embree, Mary F ; Wang, Meng-Jen Vince ; Sjoden, Glenn E ; Mastren, Tara</creator><creatorcontrib>Holiski, Connor K ; Bender, Aidan A ; Monte, Peñafrancia F ; Hennkens, Heather M ; Embree, Mary F ; Wang, Meng-Jen Vince ; Sjoden, Glenn E ; Mastren, Tara</creatorcontrib><description>Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t  = 6.95 days), which undergoes beta emission and shares similar decay properties as Lu (FDA-approved as LUTATHERA® and PLUVICTO®). Besides beta emission, Tb also emits a significant number of conversion and Auger electrons further enhancing its therapeutic potential. Terbium-161 can be produced using nuclear reactors through an indirect neutron capture reaction, G64160dn,γG64161d→3.66min,β T65161b, from Gd targets. However, a key challenge in utilizing Tb for TRT lies in effectively separating target and product materials to attain high specific activity for radiolabeling. Here, we detail the production of no-carrier added Tb using low flux research reactors (mean thermal (&lt;0.625 eV) neutron flux: 1.356×10 n∙cm ∙s ) like the University of Utah TRIGA Reactor, using enriched Gd O targets (1.5 ± 0.3 μCi of Tb per mg of Gd target per hour of irradiation). We also developed a separation technique based on cation exchange and extraction chromatography, suitable for mCi level irradiations with targets exceeding 200 mg. In a simulated full-scale irradiation, Tb was successfully isolated from large mass targets using cation exchange (AG 50W-X8, with 2-hydroxyisobutyric acid at 70 mM, pH 4.75) and extraction chromatography (LN Resin, 0.5-0.75 M HNO ) methods. This resulted in high apparent molar activities of [ Tb]Tb-DOTA (113 ± 3 MBq/nmol), demonstrating high purity Tb relevant for potential future preclinical applications.</description><identifier>EISSN: 1872-9800</identifier><identifier>PMID: 39342764</identifier><language>eng</language><publisher>England</publisher><subject>Nuclear Reactors ; Radiopharmaceuticals - isolation &amp; purification ; Terbium - chemistry ; Utah</subject><ispartof>Applied radiation and isotopes, 2024-12, Vol.214, p.111530</ispartof><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39342764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holiski, Connor K</creatorcontrib><creatorcontrib>Bender, Aidan A</creatorcontrib><creatorcontrib>Monte, Peñafrancia F</creatorcontrib><creatorcontrib>Hennkens, Heather M</creatorcontrib><creatorcontrib>Embree, Mary F</creatorcontrib><creatorcontrib>Wang, Meng-Jen Vince</creatorcontrib><creatorcontrib>Sjoden, Glenn E</creatorcontrib><creatorcontrib>Mastren, Tara</creatorcontrib><title>The production and separation of 161 Tb with high specific activity at the University of Utah</title><title>Applied radiation and isotopes</title><addtitle>Appl Radiat Isot</addtitle><description>Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t  = 6.95 days), which undergoes beta emission and shares similar decay properties as Lu (FDA-approved as LUTATHERA® and PLUVICTO®). Besides beta emission, Tb also emits a significant number of conversion and Auger electrons further enhancing its therapeutic potential. Terbium-161 can be produced using nuclear reactors through an indirect neutron capture reaction, G64160dn,γG64161d→3.66min,β T65161b, from Gd targets. However, a key challenge in utilizing Tb for TRT lies in effectively separating target and product materials to attain high specific activity for radiolabeling. Here, we detail the production of no-carrier added Tb using low flux research reactors (mean thermal (&lt;0.625 eV) neutron flux: 1.356×10 n∙cm ∙s ) like the University of Utah TRIGA Reactor, using enriched Gd O targets (1.5 ± 0.3 μCi of Tb per mg of Gd target per hour of irradiation). We also developed a separation technique based on cation exchange and extraction chromatography, suitable for mCi level irradiations with targets exceeding 200 mg. In a simulated full-scale irradiation, Tb was successfully isolated from large mass targets using cation exchange (AG 50W-X8, with 2-hydroxyisobutyric acid at 70 mM, pH 4.75) and extraction chromatography (LN Resin, 0.5-0.75 M HNO ) methods. This resulted in high apparent molar activities of [ Tb]Tb-DOTA (113 ± 3 MBq/nmol), demonstrating high purity Tb relevant for potential future preclinical applications.</description><subject>Nuclear Reactors</subject><subject>Radiopharmaceuticals - isolation &amp; purification</subject><subject>Terbium - chemistry</subject><subject>Utah</subject><issn>1872-9800</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjtsKgkAYhJcg0g6vEP8LCOsBD9dR9AB6GfGra_tH6rK7Gr59FnXd1TDDfMMsmOunSeBlKecOWxtz55xHaRasmBNmYRQkceSySy4FKN3XQ2Wp7wC7GoxQqPFj-wb82Ie8hCdZCZJuEowSFTVUAc7ISHYCtGDnmaKjUWjzTmausCi3bNngw4jdVzdsfzrmh7OnhrIV9VVpalFP19-f8G_hBc_yQEs</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Holiski, Connor K</creator><creator>Bender, Aidan A</creator><creator>Monte, Peñafrancia F</creator><creator>Hennkens, Heather M</creator><creator>Embree, Mary F</creator><creator>Wang, Meng-Jen Vince</creator><creator>Sjoden, Glenn E</creator><creator>Mastren, Tara</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>202412</creationdate><title>The production and separation of 161 Tb with high specific activity at the University of Utah</title><author>Holiski, Connor K ; Bender, Aidan A ; Monte, Peñafrancia F ; Hennkens, Heather M ; Embree, Mary F ; Wang, Meng-Jen Vince ; Sjoden, Glenn E ; Mastren, Tara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_393427643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Nuclear Reactors</topic><topic>Radiopharmaceuticals - isolation &amp; purification</topic><topic>Terbium - chemistry</topic><topic>Utah</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holiski, Connor K</creatorcontrib><creatorcontrib>Bender, Aidan A</creatorcontrib><creatorcontrib>Monte, Peñafrancia F</creatorcontrib><creatorcontrib>Hennkens, Heather M</creatorcontrib><creatorcontrib>Embree, Mary F</creatorcontrib><creatorcontrib>Wang, Meng-Jen Vince</creatorcontrib><creatorcontrib>Sjoden, Glenn E</creatorcontrib><creatorcontrib>Mastren, Tara</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Applied radiation and isotopes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holiski, Connor K</au><au>Bender, Aidan A</au><au>Monte, Peñafrancia F</au><au>Hennkens, Heather M</au><au>Embree, Mary F</au><au>Wang, Meng-Jen Vince</au><au>Sjoden, Glenn E</au><au>Mastren, Tara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The production and separation of 161 Tb with high specific activity at the University of Utah</atitle><jtitle>Applied radiation and isotopes</jtitle><addtitle>Appl Radiat Isot</addtitle><date>2024-12</date><risdate>2024</risdate><volume>214</volume><spage>111530</spage><pages>111530-</pages><eissn>1872-9800</eissn><abstract>Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t  = 6.95 days), which undergoes beta emission and shares similar decay properties as Lu (FDA-approved as LUTATHERA® and PLUVICTO®). Besides beta emission, Tb also emits a significant number of conversion and Auger electrons further enhancing its therapeutic potential. Terbium-161 can be produced using nuclear reactors through an indirect neutron capture reaction, G64160dn,γG64161d→3.66min,β T65161b, from Gd targets. However, a key challenge in utilizing Tb for TRT lies in effectively separating target and product materials to attain high specific activity for radiolabeling. Here, we detail the production of no-carrier added Tb using low flux research reactors (mean thermal (&lt;0.625 eV) neutron flux: 1.356×10 n∙cm ∙s ) like the University of Utah TRIGA Reactor, using enriched Gd O targets (1.5 ± 0.3 μCi of Tb per mg of Gd target per hour of irradiation). We also developed a separation technique based on cation exchange and extraction chromatography, suitable for mCi level irradiations with targets exceeding 200 mg. In a simulated full-scale irradiation, Tb was successfully isolated from large mass targets using cation exchange (AG 50W-X8, with 2-hydroxyisobutyric acid at 70 mM, pH 4.75) and extraction chromatography (LN Resin, 0.5-0.75 M HNO ) methods. This resulted in high apparent molar activities of [ Tb]Tb-DOTA (113 ± 3 MBq/nmol), demonstrating high purity Tb relevant for potential future preclinical applications.</abstract><cop>England</cop><pmid>39342764</pmid></addata></record>
fulltext fulltext
identifier EISSN: 1872-9800
ispartof Applied radiation and isotopes, 2024-12, Vol.214, p.111530
issn 1872-9800
language eng
recordid cdi_pubmed_primary_39342764
source ScienceDirect Journals
subjects Nuclear Reactors
Radiopharmaceuticals - isolation & purification
Terbium - chemistry
Utah
title The production and separation of 161 Tb with high specific activity at the University of Utah
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20production%20and%20separation%20of%20161%20Tb%20with%20high%20specific%20activity%20at%20the%20University%20of%20Utah&rft.jtitle=Applied%20radiation%20and%20isotopes&rft.au=Holiski,%20Connor%20K&rft.date=2024-12&rft.volume=214&rft.spage=111530&rft.pages=111530-&rft.eissn=1872-9800&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39342764%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_393427643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/39342764&rfr_iscdi=true