Loading…
Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations
Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum system...
Saved in:
Published in: | The Journal of Chemical Physics 2024-10, Vol.161 (15) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3 |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | The Journal of Chemical Physics |
container_volume | 161 |
creator | Xu, Xiansong Guo, Chu Chen, Ruofan |
description | Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory. |
doi_str_mv | 10.1063/5.0226167 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39404199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123905408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3</originalsourceid><addsrcrecordid>eNp90U1rFTEUBuAgir1WF_4BCbhRYWo-ZpJJd6VoFQpudD2cyT1pUybJmGSK_fdG79WFC1dZnIeXk_MS8pKzM86UfD-cMSEUV_oR2XE2mk4rwx6THWOCd0YxdUKelXLHGONa9E_JiTQ967kxO_JwlaGUADHS6gN2eJ-Wex9vaICa_Q-65rTfbKVpxQw15XJOLyJF57z1GCuNW8DsLSwU1mbB3lKXMnWYg0_RW7pCvaU-VrzJDRUftgVqG5Xn5ImDpeCL43tKvn388PXyU3f95erz5cV1Z4Uca7fnTslRIphh6GeBe6OdGntAIWcLTsyAehTaaD4O1mgz2HaS9jlhDOtBzvKUvDnktvW-b1jqFHyxuCwQMW1lkpwrpZXsdaOv_6F3acuxbdeUkIYNPRubentQNqdSMrppzT5Afpg4m371MQ3TsY9mXx0Ttzng_q_8U0AD7w6gWF9_H-Y_aT8BqcSTaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905408</pqid></control><display><type>article</type><title>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Xu, Xiansong ; Guo, Chu ; Chen, Ruofan</creator><creatorcontrib>Xu, Xiansong ; Guo, Chu ; Chen, Ruofan</creatorcontrib><description>Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0226167</identifier><identifier>PMID: 39404199</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Benchmarks ; Coupling ; Dynamic structural analysis ; Dynamics ; Impurities ; Mathematical analysis ; Mean field theory ; Operators (mathematics) ; Real time ; Solvers ; Tensors ; Vector spaces</subject><ispartof>The Journal of Chemical Physics, 2024-10, Vol.161 (15)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3</cites><orcidid>0000-0002-3411-3076 ; 0000-0001-7248-3003 ; 0000-0002-3102-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0226167$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>313,314,780,782,784,792,795,27922,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39404199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiansong</creatorcontrib><creatorcontrib>Guo, Chu</creatorcontrib><creatorcontrib>Chen, Ruofan</creatorcontrib><title>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</title><title>The Journal of Chemical Physics</title><addtitle>J Chem Phys</addtitle><description>Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.</description><subject>Benchmarks</subject><subject>Coupling</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Impurities</subject><subject>Mathematical analysis</subject><subject>Mean field theory</subject><subject>Operators (mathematics)</subject><subject>Real time</subject><subject>Solvers</subject><subject>Tensors</subject><subject>Vector spaces</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFTEUBuAgir1WF_4BCbhRYWo-ZpJJd6VoFQpudD2cyT1pUybJmGSK_fdG79WFC1dZnIeXk_MS8pKzM86UfD-cMSEUV_oR2XE2mk4rwx6THWOCd0YxdUKelXLHGONa9E_JiTQ967kxO_JwlaGUADHS6gN2eJ-Wex9vaICa_Q-65rTfbKVpxQw15XJOLyJF57z1GCuNW8DsLSwU1mbB3lKXMnWYg0_RW7pCvaU-VrzJDRUftgVqG5Xn5ImDpeCL43tKvn388PXyU3f95erz5cV1Z4Uca7fnTslRIphh6GeBe6OdGntAIWcLTsyAehTaaD4O1mgz2HaS9jlhDOtBzvKUvDnktvW-b1jqFHyxuCwQMW1lkpwrpZXsdaOv_6F3acuxbdeUkIYNPRubentQNqdSMrppzT5Afpg4m371MQ3TsY9mXx0Ttzng_q_8U0AD7w6gWF9_H-Y_aT8BqcSTaQ</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Xu, Xiansong</creator><creator>Guo, Chu</creator><creator>Chen, Ruofan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3411-3076</orcidid><orcidid>https://orcid.org/0000-0001-7248-3003</orcidid><orcidid>https://orcid.org/0000-0002-3102-3833</orcidid></search><sort><creationdate>20241021</creationdate><title>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</title><author>Xu, Xiansong ; Guo, Chu ; Chen, Ruofan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Coupling</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Impurities</topic><topic>Mathematical analysis</topic><topic>Mean field theory</topic><topic>Operators (mathematics)</topic><topic>Real time</topic><topic>Solvers</topic><topic>Tensors</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiansong</creatorcontrib><creatorcontrib>Guo, Chu</creatorcontrib><creatorcontrib>Chen, Ruofan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of Chemical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiansong</au><au>Guo, Chu</au><au>Chen, Ruofan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</atitle><jtitle>The Journal of Chemical Physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-10-21</date><risdate>2024</risdate><volume>161</volume><issue>15</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39404199</pmid><doi>10.1063/5.0226167</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3411-3076</orcidid><orcidid>https://orcid.org/0000-0001-7248-3003</orcidid><orcidid>https://orcid.org/0000-0002-3102-3833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of Chemical Physics, 2024-10, Vol.161 (15) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_39404199 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Benchmarks Coupling Dynamic structural analysis Dynamics Impurities Mathematical analysis Mean field theory Operators (mathematics) Real time Solvers Tensors Vector spaces |
title | Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grassmann%20time-evolving%20matrix%20product%20operators:%20An%20efficient%20numerical%20approach%20for%20fermionic%20path%20integral%20simulations&rft.jtitle=The%20Journal%20of%20Chemical%20Physics&rft.au=Xu,%20Xiansong&rft.date=2024-10-21&rft.volume=161&rft.issue=15&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0226167&rft_dat=%3Cproquest_pubme%3E3123905408%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123905408&rft_id=info:pmid/39404199&rfr_iscdi=true |