Loading…

Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations

Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum system...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of Chemical Physics 2024-10, Vol.161 (15)
Main Authors: Xu, Xiansong, Guo, Chu, Chen, Ruofan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3
container_end_page
container_issue 15
container_start_page
container_title The Journal of Chemical Physics
container_volume 161
creator Xu, Xiansong
Guo, Chu
Chen, Ruofan
description Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.
doi_str_mv 10.1063/5.0226167
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39404199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123905408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3</originalsourceid><addsrcrecordid>eNp90U1rFTEUBuAgir1WF_4BCbhRYWo-ZpJJd6VoFQpudD2cyT1pUybJmGSK_fdG79WFC1dZnIeXk_MS8pKzM86UfD-cMSEUV_oR2XE2mk4rwx6THWOCd0YxdUKelXLHGONa9E_JiTQ967kxO_JwlaGUADHS6gN2eJ-Wex9vaICa_Q-65rTfbKVpxQw15XJOLyJF57z1GCuNW8DsLSwU1mbB3lKXMnWYg0_RW7pCvaU-VrzJDRUftgVqG5Xn5ImDpeCL43tKvn388PXyU3f95erz5cV1Z4Uca7fnTslRIphh6GeBe6OdGntAIWcLTsyAehTaaD4O1mgz2HaS9jlhDOtBzvKUvDnktvW-b1jqFHyxuCwQMW1lkpwrpZXsdaOv_6F3acuxbdeUkIYNPRubentQNqdSMrppzT5Afpg4m371MQ3TsY9mXx0Ttzng_q_8U0AD7w6gWF9_H-Y_aT8BqcSTaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905408</pqid></control><display><type>article</type><title>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Xu, Xiansong ; Guo, Chu ; Chen, Ruofan</creator><creatorcontrib>Xu, Xiansong ; Guo, Chu ; Chen, Ruofan</creatorcontrib><description>Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0226167</identifier><identifier>PMID: 39404199</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Benchmarks ; Coupling ; Dynamic structural analysis ; Dynamics ; Impurities ; Mathematical analysis ; Mean field theory ; Operators (mathematics) ; Real time ; Solvers ; Tensors ; Vector spaces</subject><ispartof>The Journal of Chemical Physics, 2024-10, Vol.161 (15)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3</cites><orcidid>0000-0002-3411-3076 ; 0000-0001-7248-3003 ; 0000-0002-3102-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0226167$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>313,314,780,782,784,792,795,27922,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39404199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiansong</creatorcontrib><creatorcontrib>Guo, Chu</creatorcontrib><creatorcontrib>Chen, Ruofan</creatorcontrib><title>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</title><title>The Journal of Chemical Physics</title><addtitle>J Chem Phys</addtitle><description>Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.</description><subject>Benchmarks</subject><subject>Coupling</subject><subject>Dynamic structural analysis</subject><subject>Dynamics</subject><subject>Impurities</subject><subject>Mathematical analysis</subject><subject>Mean field theory</subject><subject>Operators (mathematics)</subject><subject>Real time</subject><subject>Solvers</subject><subject>Tensors</subject><subject>Vector spaces</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90U1rFTEUBuAgir1WF_4BCbhRYWo-ZpJJd6VoFQpudD2cyT1pUybJmGSK_fdG79WFC1dZnIeXk_MS8pKzM86UfD-cMSEUV_oR2XE2mk4rwx6THWOCd0YxdUKelXLHGONa9E_JiTQ967kxO_JwlaGUADHS6gN2eJ-Wex9vaICa_Q-65rTfbKVpxQw15XJOLyJF57z1GCuNW8DsLSwU1mbB3lKXMnWYg0_RW7pCvaU-VrzJDRUftgVqG5Xn5ImDpeCL43tKvn388PXyU3f95erz5cV1Z4Uca7fnTslRIphh6GeBe6OdGntAIWcLTsyAehTaaD4O1mgz2HaS9jlhDOtBzvKUvDnktvW-b1jqFHyxuCwQMW1lkpwrpZXsdaOv_6F3acuxbdeUkIYNPRubentQNqdSMrppzT5Afpg4m371MQ3TsY9mXx0Ttzng_q_8U0AD7w6gWF9_H-Y_aT8BqcSTaQ</recordid><startdate>20241021</startdate><enddate>20241021</enddate><creator>Xu, Xiansong</creator><creator>Guo, Chu</creator><creator>Chen, Ruofan</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3411-3076</orcidid><orcidid>https://orcid.org/0000-0001-7248-3003</orcidid><orcidid>https://orcid.org/0000-0002-3102-3833</orcidid></search><sort><creationdate>20241021</creationdate><title>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</title><author>Xu, Xiansong ; Guo, Chu ; Chen, Ruofan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Coupling</topic><topic>Dynamic structural analysis</topic><topic>Dynamics</topic><topic>Impurities</topic><topic>Mathematical analysis</topic><topic>Mean field theory</topic><topic>Operators (mathematics)</topic><topic>Real time</topic><topic>Solvers</topic><topic>Tensors</topic><topic>Vector spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiansong</creatorcontrib><creatorcontrib>Guo, Chu</creatorcontrib><creatorcontrib>Chen, Ruofan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of Chemical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiansong</au><au>Guo, Chu</au><au>Chen, Ruofan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations</atitle><jtitle>The Journal of Chemical Physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-10-21</date><risdate>2024</risdate><volume>161</volume><issue>15</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Developing numerical exact solvers for open quantum systems is a challenging task due to the non-perturbative and non-Markovian nature when coupling to structured environments. The Feynman–Vernon influence functional approach is a powerful analytical tool to study the dynamics of open quantum systems. Numerical treatments of the influence functional including the quasi-adiabatic propagator technique and the tensor-network-based time-evolving matrix product operator method have proven to be efficient in studying open quantum systems with bosonic environments. However, the numerical implementation of the fermionic path integral suffers from the Grassmann algebra involved. In this work, we present a detailed introduction to the Grassmann time-evolving matrix product operator method for fermionic open quantum systems. In particular, we introduce the concepts of Grassmann tensor, signed matrix product operator, and Grassmann matrix product state to handle the Grassmann path integral. Using the single-orbital Anderson impurity model as an example, we review the numerical benchmarks for structured fermionic environments for real-time nonequilibrium dynamics, real-time and imaginary-time equilibration dynamics, and its application as an impurity solver. These benchmarks show that our method is a robust and promising numerical approach to study strong coupling physics and non-Markovian dynamics. It can also serve as an alternative impurity solver to study strongly correlated quantum matter with dynamical mean-field theory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39404199</pmid><doi>10.1063/5.0226167</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3411-3076</orcidid><orcidid>https://orcid.org/0000-0001-7248-3003</orcidid><orcidid>https://orcid.org/0000-0002-3102-3833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of Chemical Physics, 2024-10, Vol.161 (15)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_pubmed_primary_39404199
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Benchmarks
Coupling
Dynamic structural analysis
Dynamics
Impurities
Mathematical analysis
Mean field theory
Operators (mathematics)
Real time
Solvers
Tensors
Vector spaces
title Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grassmann%20time-evolving%20matrix%20product%20operators:%20An%20efficient%20numerical%20approach%20for%20fermionic%20path%20integral%20simulations&rft.jtitle=The%20Journal%20of%20Chemical%20Physics&rft.au=Xu,%20Xiansong&rft.date=2024-10-21&rft.volume=161&rft.issue=15&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0226167&rft_dat=%3Cproquest_pubme%3E3123905408%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-d1f6383ea9554b2ed97f684ae23bcaf2bae782797185c9795c10604129904a3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123905408&rft_id=info:pmid/39404199&rfr_iscdi=true