Loading…
Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy
Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing...
Saved in:
Published in: | Nanotechnology 2024-12, Vol.36 (7), p.75701 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943 |
container_end_page | |
container_issue | 7 |
container_start_page | 75701 |
container_title | Nanotechnology |
container_volume | 36 |
creator | Ishida, Nobuyuki Mano, Takaaki |
description | Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods. |
doi_str_mv | 10.1088/1361-6528/ad960e |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39577014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132141263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943</originalsourceid><addsrcrecordid>eNp9kUuLFTEQhYMoznV070qynIXt5NXpzlIGXzgggq5Dkq5ghnSnTdIj90_4m01zr7MSVwVV3zlUnULoJSVvKBnHa8ol7WTPxmszKUngETo8tB6jA1H90Akxigv0rJQ7QigdGX2KLngbDISKA_r9dTNLDdXUcA-4_oCUoQZnIjaLiccSCk5-72OI4GpOZUcd9ik7wBbqL4AFGzxDNTG2QQ1rk064wBxcWqbN1ZRx2bI3TRAW_BnifStrThbONo1sxi6tx-foiTexwItzvUTf37_7dvOxu_3y4dPN29vOsZ7VThrWW-DCsl75iStlJR0UF6rdxSRjapDS8Hagl8QaIA68ESP03vdgrRL8El2dfNsaPzcoVc-hOIjRLJC2ojnljArKJG8oOaH7jiWD12sOs8lHTYnev6D3yPUeuT59oUlend03O8P0IPgbewNen4CQVn2XttyyLv_zu_oHvpglaS71oMnQN1u9Tp7_AZwmoY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132141263</pqid></control><display><type>article</type><title>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ishida, Nobuyuki ; Mano, Takaaki</creator><creatorcontrib>Ishida, Nobuyuki ; Mano, Takaaki</creatorcontrib><description>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.</description><identifier>ISSN: 0957-4484</identifier><identifier>ISSN: 1361-6528</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad960e</identifier><identifier>PMID: 39577014</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>electrostatic force simulation ; GaAs ; Kelvin probe force microscopy ; tip-induced band bending</subject><ispartof>Nanotechnology, 2024-12, Vol.36 (7), p.75701</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943</cites><orcidid>0000-0003-0161-0583 ; 0000-0002-6955-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39577014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Nobuyuki</creatorcontrib><creatorcontrib>Mano, Takaaki</creatorcontrib><title>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.</description><subject>electrostatic force simulation</subject><subject>GaAs</subject><subject>Kelvin probe force microscopy</subject><subject>tip-induced band bending</subject><issn>0957-4484</issn><issn>1361-6528</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFTEQhYMoznV070qynIXt5NXpzlIGXzgggq5Dkq5ghnSnTdIj90_4m01zr7MSVwVV3zlUnULoJSVvKBnHa8ol7WTPxmszKUngETo8tB6jA1H90Akxigv0rJQ7QigdGX2KLngbDISKA_r9dTNLDdXUcA-4_oCUoQZnIjaLiccSCk5-72OI4GpOZUcd9ik7wBbqL4AFGzxDNTG2QQ1rk064wBxcWqbN1ZRx2bI3TRAW_BnifStrThbONo1sxi6tx-foiTexwItzvUTf37_7dvOxu_3y4dPN29vOsZ7VThrWW-DCsl75iStlJR0UF6rdxSRjapDS8Hagl8QaIA68ESP03vdgrRL8El2dfNsaPzcoVc-hOIjRLJC2ojnljArKJG8oOaH7jiWD12sOs8lHTYnev6D3yPUeuT59oUlend03O8P0IPgbewNen4CQVn2XttyyLv_zu_oHvpglaS71oMnQN1u9Tp7_AZwmoY4</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Ishida, Nobuyuki</creator><creator>Mano, Takaaki</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0161-0583</orcidid><orcidid>https://orcid.org/0000-0002-6955-260X</orcidid></search><sort><creationdate>20241203</creationdate><title>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</title><author>Ishida, Nobuyuki ; Mano, Takaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electrostatic force simulation</topic><topic>GaAs</topic><topic>Kelvin probe force microscopy</topic><topic>tip-induced band bending</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Nobuyuki</creatorcontrib><creatorcontrib>Mano, Takaaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Nobuyuki</au><au>Mano, Takaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>75701</spage><pages>75701-</pages><issn>0957-4484</issn><issn>1361-6528</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39577014</pmid><doi>10.1088/1361-6528/ad960e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0161-0583</orcidid><orcidid>https://orcid.org/0000-0002-6955-260X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2024-12, Vol.36 (7), p.75701 |
issn | 0957-4484 1361-6528 1361-6528 |
language | eng |
recordid | cdi_pubmed_primary_39577014 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | electrostatic force simulation GaAs Kelvin probe force microscopy tip-induced band bending |
title | Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20theoretical%20analysis%20of%20the%20electrostatic%20force%20between%20a%20metallic%20tip%20and%20semiconductor%20surface%20in%20Kelvin%20probe%20force%20microscopy&rft.jtitle=Nanotechnology&rft.au=Ishida,%20Nobuyuki&rft.date=2024-12-03&rft.volume=36&rft.issue=7&rft.spage=75701&rft.pages=75701-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad960e&rft_dat=%3Cproquest_pubme%3E3132141263%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132141263&rft_id=info:pmid/39577014&rfr_iscdi=true |