Loading…

Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy

Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2024-12, Vol.36 (7), p.75701
Main Authors: Ishida, Nobuyuki, Mano, Takaaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943
container_end_page
container_issue 7
container_start_page 75701
container_title Nanotechnology
container_volume 36
creator Ishida, Nobuyuki
Mano, Takaaki
description Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.
doi_str_mv 10.1088/1361-6528/ad960e
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39577014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132141263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943</originalsourceid><addsrcrecordid>eNp9kUuLFTEQhYMoznV070qynIXt5NXpzlIGXzgggq5Dkq5ghnSnTdIj90_4m01zr7MSVwVV3zlUnULoJSVvKBnHa8ol7WTPxmszKUngETo8tB6jA1H90Akxigv0rJQ7QigdGX2KLngbDISKA_r9dTNLDdXUcA-4_oCUoQZnIjaLiccSCk5-72OI4GpOZUcd9ik7wBbqL4AFGzxDNTG2QQ1rk064wBxcWqbN1ZRx2bI3TRAW_BnifStrThbONo1sxi6tx-foiTexwItzvUTf37_7dvOxu_3y4dPN29vOsZ7VThrWW-DCsl75iStlJR0UF6rdxSRjapDS8Hagl8QaIA68ESP03vdgrRL8El2dfNsaPzcoVc-hOIjRLJC2ojnljArKJG8oOaH7jiWD12sOs8lHTYnev6D3yPUeuT59oUlend03O8P0IPgbewNen4CQVn2XttyyLv_zu_oHvpglaS71oMnQN1u9Tp7_AZwmoY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132141263</pqid></control><display><type>article</type><title>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Ishida, Nobuyuki ; Mano, Takaaki</creator><creatorcontrib>Ishida, Nobuyuki ; Mano, Takaaki</creatorcontrib><description>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.</description><identifier>ISSN: 0957-4484</identifier><identifier>ISSN: 1361-6528</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/ad960e</identifier><identifier>PMID: 39577014</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>electrostatic force simulation ; GaAs ; Kelvin probe force microscopy ; tip-induced band bending</subject><ispartof>Nanotechnology, 2024-12, Vol.36 (7), p.75701</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943</cites><orcidid>0000-0003-0161-0583 ; 0000-0002-6955-260X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39577014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishida, Nobuyuki</creatorcontrib><creatorcontrib>Mano, Takaaki</creatorcontrib><title>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.</description><subject>electrostatic force simulation</subject><subject>GaAs</subject><subject>Kelvin probe force microscopy</subject><subject>tip-induced band bending</subject><issn>0957-4484</issn><issn>1361-6528</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFTEQhYMoznV070qynIXt5NXpzlIGXzgggq5Dkq5ghnSnTdIj90_4m01zr7MSVwVV3zlUnULoJSVvKBnHa8ol7WTPxmszKUngETo8tB6jA1H90Akxigv0rJQ7QigdGX2KLngbDISKA_r9dTNLDdXUcA-4_oCUoQZnIjaLiccSCk5-72OI4GpOZUcd9ik7wBbqL4AFGzxDNTG2QQ1rk064wBxcWqbN1ZRx2bI3TRAW_BnifStrThbONo1sxi6tx-foiTexwItzvUTf37_7dvOxu_3y4dPN29vOsZ7VThrWW-DCsl75iStlJR0UF6rdxSRjapDS8Hagl8QaIA68ESP03vdgrRL8El2dfNsaPzcoVc-hOIjRLJC2ojnljArKJG8oOaH7jiWD12sOs8lHTYnev6D3yPUeuT59oUlend03O8P0IPgbewNen4CQVn2XttyyLv_zu_oHvpglaS71oMnQN1u9Tp7_AZwmoY4</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Ishida, Nobuyuki</creator><creator>Mano, Takaaki</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0161-0583</orcidid><orcidid>https://orcid.org/0000-0002-6955-260X</orcidid></search><sort><creationdate>20241203</creationdate><title>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</title><author>Ishida, Nobuyuki ; Mano, Takaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>electrostatic force simulation</topic><topic>GaAs</topic><topic>Kelvin probe force microscopy</topic><topic>tip-induced band bending</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishida, Nobuyuki</creatorcontrib><creatorcontrib>Mano, Takaaki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishida, Nobuyuki</au><au>Mano, Takaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><spage>75701</spage><pages>75701-</pages><issn>0957-4484</issn><issn>1361-6528</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39577014</pmid><doi>10.1088/1361-6528/ad960e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0161-0583</orcidid><orcidid>https://orcid.org/0000-0002-6955-260X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2024-12, Vol.36 (7), p.75701
issn 0957-4484
1361-6528
1361-6528
language eng
recordid cdi_pubmed_primary_39577014
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects electrostatic force simulation
GaAs
Kelvin probe force microscopy
tip-induced band bending
title Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20theoretical%20analysis%20of%20the%20electrostatic%20force%20between%20a%20metallic%20tip%20and%20semiconductor%20surface%20in%20Kelvin%20probe%20force%20microscopy&rft.jtitle=Nanotechnology&rft.au=Ishida,%20Nobuyuki&rft.date=2024-12-03&rft.volume=36&rft.issue=7&rft.spage=75701&rft.pages=75701-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/ad960e&rft_dat=%3Cproquest_pubme%3E3132141263%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c252t-6a25be34b259fd399b617934995726229766a3014f60bae0cefa48e5ff5ebb943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132141263&rft_id=info:pmid/39577014&rfr_iscdi=true