Loading…
Introduction to machine learning potentials for atomistic simulations
Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scien...
Saved in:
Published in: | Journal of physics. Condensed matter 2024-12, Vol.37 (7) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | Journal of physics. Condensed matter |
container_volume | 37 |
creator | Thiemann, Fabian L O’Neill, Niamh Kapil, Venkat Michaelides, Angelos Schran, Christoph |
description | Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations. |
doi_str_mv | 10.1088/1361-648X/ad9657 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39577092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132141761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-c36087faaab912851bd7af7157d82d00782b36926e4e4b397edf895954c8e0083</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwM6GMDITaseOPEVUFKlViAYnNchwHXCV2sJ2Bf0-iFDamJz2de_XeAeAawXsEOV8jTFFOCX9fq1rQkp2A5d_qFCyhKHHOBScLcBHjAUJIOCbnYIFFyRgUxRJsdy4FXw86We-y5LNO6U_rTNYaFZx1H1nvk3HJqjZmjQ-ZSr6zMVmdRdsNrZpy8RKcNSNgro5zBd4et6-b53z_8rTbPOxzXVCUco0p5KxRSlUCFbxEVc1Uw1DJal7UEDJeVJiKghpiSIUFM3XDRSlKormBkOMVuJ17--C_BhOTHG_Rpm2VM36IEiNcIIIYRSMKZ1QHH2MwjeyD7VT4lgjKSZ6cTMnJlJzljZGbY_tQdab-C_zaGoG7GbC-lwc_BDc--3_fD5kNeJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132141761</pqid></control><display><type>article</type><title>Introduction to machine learning potentials for atomistic simulations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Thiemann, Fabian L ; O’Neill, Niamh ; Kapil, Venkat ; Michaelides, Angelos ; Schran, Christoph</creator><creatorcontrib>Thiemann, Fabian L ; O’Neill, Niamh ; Kapil, Venkat ; Michaelides, Angelos ; Schran, Christoph</creatorcontrib><description>Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad9657</identifier><identifier>PMID: 39577092</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>atomistic simulations ; interatomic interactions ; machine learning potentials ; potential energy surfaces</subject><ispartof>Journal of physics. Condensed matter, 2024-12, Vol.37 (7)</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2951-6740 ; 0000-0003-0324-2198 ; 0000-0003-4595-5073 ; 0000-0002-9169-169X ; 0000-0003-1808-0814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39577092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiemann, Fabian L</creatorcontrib><creatorcontrib>O’Neill, Niamh</creatorcontrib><creatorcontrib>Kapil, Venkat</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><title>Introduction to machine learning potentials for atomistic simulations</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.</description><subject>atomistic simulations</subject><subject>interatomic interactions</subject><subject>machine learning potentials</subject><subject>potential energy surfaces</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EoqWwM6GMDITaseOPEVUFKlViAYnNchwHXCV2sJ2Bf0-iFDamJz2de_XeAeAawXsEOV8jTFFOCX9fq1rQkp2A5d_qFCyhKHHOBScLcBHjAUJIOCbnYIFFyRgUxRJsdy4FXw86We-y5LNO6U_rTNYaFZx1H1nvk3HJqjZmjQ-ZSr6zMVmdRdsNrZpy8RKcNSNgro5zBd4et6-b53z_8rTbPOxzXVCUco0p5KxRSlUCFbxEVc1Uw1DJal7UEDJeVJiKghpiSIUFM3XDRSlKormBkOMVuJ17--C_BhOTHG_Rpm2VM36IEiNcIIIYRSMKZ1QHH2MwjeyD7VT4lgjKSZ6cTMnJlJzljZGbY_tQdab-C_zaGoG7GbC-lwc_BDc--3_fD5kNeJw</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Thiemann, Fabian L</creator><creator>O’Neill, Niamh</creator><creator>Kapil, Venkat</creator><creator>Michaelides, Angelos</creator><creator>Schran, Christoph</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2951-6740</orcidid><orcidid>https://orcid.org/0000-0003-0324-2198</orcidid><orcidid>https://orcid.org/0000-0003-4595-5073</orcidid><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000-0003-1808-0814</orcidid></search><sort><creationdate>20241206</creationdate><title>Introduction to machine learning potentials for atomistic simulations</title><author>Thiemann, Fabian L ; O’Neill, Niamh ; Kapil, Venkat ; Michaelides, Angelos ; Schran, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-c36087faaab912851bd7af7157d82d00782b36926e4e4b397edf895954c8e0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>atomistic simulations</topic><topic>interatomic interactions</topic><topic>machine learning potentials</topic><topic>potential energy surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiemann, Fabian L</creatorcontrib><creatorcontrib>O’Neill, Niamh</creatorcontrib><creatorcontrib>Kapil, Venkat</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiemann, Fabian L</au><au>O’Neill, Niamh</au><au>Kapil, Venkat</au><au>Michaelides, Angelos</au><au>Schran, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to machine learning potentials for atomistic simulations</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>37</volume><issue>7</issue><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39577092</pmid><doi>10.1088/1361-648X/ad9657</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-2951-6740</orcidid><orcidid>https://orcid.org/0000-0003-0324-2198</orcidid><orcidid>https://orcid.org/0000-0003-4595-5073</orcidid><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000-0003-1808-0814</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2024-12, Vol.37 (7) |
issn | 0953-8984 1361-648X 1361-648X |
language | eng |
recordid | cdi_pubmed_primary_39577092 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | atomistic simulations interatomic interactions machine learning potentials potential energy surfaces |
title | Introduction to machine learning potentials for atomistic simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20machine%20learning%20potentials%20for%20atomistic%20simulations&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Thiemann,%20Fabian%20L&rft.date=2024-12-06&rft.volume=37&rft.issue=7&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad9657&rft_dat=%3Cproquest_pubme%3E3132141761%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-c36087faaab912851bd7af7157d82d00782b36926e4e4b397edf895954c8e0083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132141761&rft_id=info:pmid/39577092&rfr_iscdi=true |