Loading…

Introduction to machine learning potentials for atomistic simulations

Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scien...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2024-12, Vol.37 (7)
Main Authors: Thiemann, Fabian L, O’Neill, Niamh, Kapil, Venkat, Michaelides, Angelos, Schran, Christoph
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7
container_start_page
container_title Journal of physics. Condensed matter
container_volume 37
creator Thiemann, Fabian L
O’Neill, Niamh
Kapil, Venkat
Michaelides, Angelos
Schran, Christoph
description Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.
doi_str_mv 10.1088/1361-648X/ad9657
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39577092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132141761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-c36087faaab912851bd7af7157d82d00782b36926e4e4b397edf895954c8e0083</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EoqWwM6GMDITaseOPEVUFKlViAYnNchwHXCV2sJ2Bf0-iFDamJz2de_XeAeAawXsEOV8jTFFOCX9fq1rQkp2A5d_qFCyhKHHOBScLcBHjAUJIOCbnYIFFyRgUxRJsdy4FXw86We-y5LNO6U_rTNYaFZx1H1nvk3HJqjZmjQ-ZSr6zMVmdRdsNrZpy8RKcNSNgro5zBd4et6-b53z_8rTbPOxzXVCUco0p5KxRSlUCFbxEVc1Uw1DJal7UEDJeVJiKghpiSIUFM3XDRSlKormBkOMVuJ17--C_BhOTHG_Rpm2VM36IEiNcIIIYRSMKZ1QHH2MwjeyD7VT4lgjKSZ6cTMnJlJzljZGbY_tQdab-C_zaGoG7GbC-lwc_BDc--3_fD5kNeJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132141761</pqid></control><display><type>article</type><title>Introduction to machine learning potentials for atomistic simulations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Thiemann, Fabian L ; O’Neill, Niamh ; Kapil, Venkat ; Michaelides, Angelos ; Schran, Christoph</creator><creatorcontrib>Thiemann, Fabian L ; O’Neill, Niamh ; Kapil, Venkat ; Michaelides, Angelos ; Schran, Christoph</creatorcontrib><description>Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.</description><identifier>ISSN: 0953-8984</identifier><identifier>ISSN: 1361-648X</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ad9657</identifier><identifier>PMID: 39577092</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>atomistic simulations ; interatomic interactions ; machine learning potentials ; potential energy surfaces</subject><ispartof>Journal of physics. Condensed matter, 2024-12, Vol.37 (7)</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2951-6740 ; 0000-0003-0324-2198 ; 0000-0003-4595-5073 ; 0000-0002-9169-169X ; 0000-0003-1808-0814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39577092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thiemann, Fabian L</creatorcontrib><creatorcontrib>O’Neill, Niamh</creatorcontrib><creatorcontrib>Kapil, Venkat</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><title>Introduction to machine learning potentials for atomistic simulations</title><title>Journal of physics. Condensed matter</title><addtitle>JPhysCM</addtitle><addtitle>J. Phys.: Condens. Matter</addtitle><description>Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.</description><subject>atomistic simulations</subject><subject>interatomic interactions</subject><subject>machine learning potentials</subject><subject>potential energy surfaces</subject><issn>0953-8984</issn><issn>1361-648X</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EoqWwM6GMDITaseOPEVUFKlViAYnNchwHXCV2sJ2Bf0-iFDamJz2de_XeAeAawXsEOV8jTFFOCX9fq1rQkp2A5d_qFCyhKHHOBScLcBHjAUJIOCbnYIFFyRgUxRJsdy4FXw86We-y5LNO6U_rTNYaFZx1H1nvk3HJqjZmjQ-ZSr6zMVmdRdsNrZpy8RKcNSNgro5zBd4et6-b53z_8rTbPOxzXVCUco0p5KxRSlUCFbxEVc1Uw1DJal7UEDJeVJiKghpiSIUFM3XDRSlKormBkOMVuJ17--C_BhOTHG_Rpm2VM36IEiNcIIIYRSMKZ1QHH2MwjeyD7VT4lgjKSZ6cTMnJlJzljZGbY_tQdab-C_zaGoG7GbC-lwc_BDc--3_fD5kNeJw</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Thiemann, Fabian L</creator><creator>O’Neill, Niamh</creator><creator>Kapil, Venkat</creator><creator>Michaelides, Angelos</creator><creator>Schran, Christoph</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2951-6740</orcidid><orcidid>https://orcid.org/0000-0003-0324-2198</orcidid><orcidid>https://orcid.org/0000-0003-4595-5073</orcidid><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000-0003-1808-0814</orcidid></search><sort><creationdate>20241206</creationdate><title>Introduction to machine learning potentials for atomistic simulations</title><author>Thiemann, Fabian L ; O’Neill, Niamh ; Kapil, Venkat ; Michaelides, Angelos ; Schran, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-c36087faaab912851bd7af7157d82d00782b36926e4e4b397edf895954c8e0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>atomistic simulations</topic><topic>interatomic interactions</topic><topic>machine learning potentials</topic><topic>potential energy surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiemann, Fabian L</creatorcontrib><creatorcontrib>O’Neill, Niamh</creatorcontrib><creatorcontrib>Kapil, Venkat</creatorcontrib><creatorcontrib>Michaelides, Angelos</creatorcontrib><creatorcontrib>Schran, Christoph</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiemann, Fabian L</au><au>O’Neill, Niamh</au><au>Kapil, Venkat</au><au>Michaelides, Angelos</au><au>Schran, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction to machine learning potentials for atomistic simulations</atitle><jtitle>Journal of physics. Condensed matter</jtitle><stitle>JPhysCM</stitle><addtitle>J. Phys.: Condens. Matter</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>37</volume><issue>7</issue><issn>0953-8984</issn><issn>1361-648X</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39577092</pmid><doi>10.1088/1361-648X/ad9657</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-2951-6740</orcidid><orcidid>https://orcid.org/0000-0003-0324-2198</orcidid><orcidid>https://orcid.org/0000-0003-4595-5073</orcidid><orcidid>https://orcid.org/0000-0002-9169-169X</orcidid><orcidid>https://orcid.org/0000-0003-1808-0814</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2024-12, Vol.37 (7)
issn 0953-8984
1361-648X
1361-648X
language eng
recordid cdi_pubmed_primary_39577092
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects atomistic simulations
interatomic interactions
machine learning potentials
potential energy surfaces
title Introduction to machine learning potentials for atomistic simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20to%20machine%20learning%20potentials%20for%20atomistic%20simulations&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Thiemann,%20Fabian%20L&rft.date=2024-12-06&rft.volume=37&rft.issue=7&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/1361-648X/ad9657&rft_dat=%3Cproquest_pubme%3E3132141761%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-c36087faaab912851bd7af7157d82d00782b36926e4e4b397edf895954c8e0083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132141761&rft_id=info:pmid/39577092&rfr_iscdi=true