Loading…

Nanostructured zinc carbonate hydroxide microflakes: assessing the toxicity against erythrocytes and L929 cells in vitro

Nanostructured materials have been suggested to be used as a source of dietary zinc for livestock animals. In this study, we assessed the cytotoxicity of newly synthesized nanostructured zinc carbonate hydroxide (ZnCH) Zn (CO )(OH) microflakes. Cytotoxicity of the microflakes was assessed against mu...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2025-02, Vol.36 (8), p.85102
Main Authors: Prokopiuk, Volodymyr, Onishchenko, Anatolii, Pazura, Yuliia, Bespalova, Iryna, Kökbaş, Umut, Tryfonyuk, Liliya, Mateychenko, Pavlo, Kot, Kateryna, Kurmangaliyeva, Saulesh, Kot, Yurii, Yefimova, Svetlana, Tkachenko, Anton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanostructured materials have been suggested to be used as a source of dietary zinc for livestock animals. In this study, we assessed the cytotoxicity of newly synthesized nanostructured zinc carbonate hydroxide (ZnCH) Zn (CO )(OH) microflakes. Cytotoxicity of the microflakes was assessed against murine L929 cell line and rat mature erythrocytes. Viability, motility, cell death pathways, implication of Ca , reactive oxygen species and reactive nitrogen species (RNS) signaling, caspases, and alterations of cell membranes following exposure of L929 cells to the microflakes were assessed. To assess hemocompatibility of the Zn-containing microflakes, osmotic fragility and hemolysis assays were performed, as well as multiple eryptosis parameters were evaluated. Our findings indicate a dose-response cytotoxicity of ZnCH microflakes against L929 cells with no toxicity observed for low concentrations (10 mg l and below). At high concentrations (25 mg l and above), ZnCH microflakes promoted nitrosyl stress, Ca - and caspase-dependent apoptosis, and altered lipid order of cell membranes in a dose-dependent manner, evidenced by up to 7-fold elevation of RNS-dependent fluorescence, 2.9-fold enhancement of Fura 2-dependent fluorescence, over 20-fold elevation of caspases-dependent fluorescence (caspase-3, caspase-8, and caspase-9), and up to 4.4-fold increase in the ratiometric index of the NR12S probe. Surprisingly, toxicity to enucleated mature erythrocytes was found to be lower compared to L929 cells. ZnCH microflakes induced eryptosis associated with oxidative stress, nitrosyl stress, Ca signaling and recruitment of caspases at 25-50-100 mg l . Eryptosis assays were found to be more sensitive than evaluation of hemolysis. Zn (CO )(OH) microflakes show no cytotoxicity at low concentrations indicating their potential as a source of zinc for livestock animals.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ad9aac