Loading…
Ceftolozane/tazobactam disrupts Pseudomonas aeruginosa biofilms under static and dynamic conditions
Pseudomonas aeruginosa biofilms limit the efficacy of currently available antibacterial therapies and pose significant clinical challenges. Pseudomonal biofilms are complicated further when other markers of persistence such as mucoid and hypermutable phenotypes are present. There is currently a pauc...
Saved in:
Published in: | Journal of antimicrobial chemotherapy 2024-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pseudomonas aeruginosa biofilms limit the efficacy of currently available antibacterial therapies and pose significant clinical challenges. Pseudomonal biofilms are complicated further when other markers of persistence such as mucoid and hypermutable phenotypes are present. There is currently a paucity of data regarding the activity of the newer β-lactam/β-lactamase inhibitor combination ceftolozane/tazobactam against P. aeruginosa biofilms.
We evaluated the efficacy of ceftolozane/tazobactam against clinical P. aeruginosa isolates, the laboratory isolate PAO1 and its isogenic mutS-deficient hypermutator derivative (PAOMS) grown under static and dynamic biofilm conditions. The clinical isolate collection included strains with mucoid and hypermutable phenotypes.
Ceftolozane/tazobactam exposure led to a bactericidal (≥3 log cfu/cm2) biofilm reduction in 15/18 (83%) clinical isolates grown under static conditions, irrespective of carbapenem susceptibility or mucoid phenotype, with greater activity compared with colistin (P |
---|---|
ISSN: | 1460-2091 1460-2091 |
DOI: | 10.1093/jac/dkae413 |