Loading…
Spatial regulation of NSUN2-mediated tRNA m5C installation in cognitive function
Enzyme-mediated modifications of tRNA, such as 5-methylcytosine (m5C) installed by nuclear-enriched NOP2/Sun RNA methyltransferase 2 (NSUN2), play a critical role in neuronal development and function. However, our understanding of these modifications' spatial installation and biological functio...
Saved in:
Published in: | Nucleic acids research 2024-12 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enzyme-mediated modifications of tRNA, such as 5-methylcytosine (m5C) installed by nuclear-enriched NOP2/Sun RNA methyltransferase 2 (NSUN2), play a critical role in neuronal development and function. However, our understanding of these modifications' spatial installation and biological functions remains incomplete. In this study, we demonstrate that a nucleoplasm-localized G679R NSUN2 mutant, linked to intellectual disability, diminishes NSUN2-mediated tRNA m5C in human cell lines and Drosophila. Our findings indicate that inability of G679R-NSUN2 to install m5C is primarily attributed to its reduced binding to tRNA rather than its nucleoplasmic localization. Conversely, an NSUN2 variant lacking an internal intrinsically disordered region (ΔIDR-NSUN2) can install ∼80% m5C within the nucleoplasm. Furthermore, we show that tRNA m5C levels are positively correlated to cognitive performance in Drosophila, where expressing G679R-NSUN2 leads to the most severe social behavioral deficits while expressing ΔIDR-NSUN2 results in less pronounced deficits. This work illuminates the molecular mechanism underlying G679R disease mutation in cognitive function and offers valuable insights into the significance of the cellular localization of m5C installation on tRNA for neuronal function. |
---|---|
ISSN: | 1362-4962 1362-4962 |
DOI: | 10.1093/nar/gkae1169 |