Loading…
Electrical Synapses between Motoneurons in the Spinal Cord of the Newborn Rat
Ventral roots of the newborn rat spinal cord were stimulated while recording intracellularly from motoneurons. In many cells, stimulation subthreshold for an antidromic action potential in the impaled cell produced a small, short-latency depolarization, which was unaffected by membrane polarization....
Saved in:
Published in: | Proceedings of the Royal Society of London. Series B, Biological sciences Biological sciences, 1980-06, Vol.208 (1170), p.115-120 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ventral roots of the newborn rat spinal cord were stimulated while recording intracellularly from motoneurons. In many cells, stimulation subthreshold for an antidromic action potential in the impaled cell produced a small, short-latency depolarization, which was unaffected by membrane polarization. This response (antidromic synaptic potential, a.s.p.) was also seen, in some cells, on stimulating the ventral root of an adjacent segment. Replacement of Ca2+ (2 mM) with Mn2+ (3 mM ) or Mg2+ (10 mM) completely abolished orthodromic synaptic potentials, but the a.s.p. persisted. These results strongly suggest that the a.s.p. is produced by an electrical interaction between motoneurons. |
---|---|
ISSN: | 0962-8452 0080-4649 0950-1193 1471-2954 2053-9193 |
DOI: | 10.1098/rspb.1980.0045 |