Loading…
Oligomeric Structure of Muscarinic Receptors is Shown by Photoaffinity Labeling: Subunit Assembly May Explain High- and Low-Affinity Agonist States
The potent muscarinic photoaffinity reagent N-methyl-4-piperidyl p-azidobenzilate (azido-4NMPB) was used to covalently label specific muscarinic binding sites in various brain regions and in the heart. In the cortex and hippocampus, a single specifically labeled protein with an apparent molecular ma...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1983-01, Vol.80 (1), p.156-159 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The potent muscarinic photoaffinity reagent N-methyl-4-piperidyl p-azidobenzilate (azido-4NMPB) was used to covalently label specific muscarinic binding sites in various brain regions and in the heart. In the cortex and hippocampus, a single specifically labeled protein with an apparent molecular mass of 86,000 daltons was detected by gel electrophoresis. In the medulla pons, cerebellum, and cardiac atria, there was a 160,000-dalton band in addition to the 86,000-dalton polypeptide. Under certain conditions, alkali or hydroxylamine treatment dissociated both macromolecules into a single 40,000-dalton polypeptide. These results suggest that the muscarinic receptor exists in oligomeric forms and that a dimer and tetramer of a basic 40,000-dalton peptide may exist as interconvertible species. We propose a model to explain the biological architecture of the muscarinic receptors and suggest a possible correlation between the azido-4NMPB-labeled polypeptides and the two states of the receptor observed in agonist binding experiments. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.80.1.156 |