Loading…
A Rapidly Converging Algorithm for Estimating Respiratory Mechanical Parameters in a Five-Element Model
A rapidly converging algorithm for computing values for respiratory mechanical parameters from forced random noise independance data was developed and verified. The algorithm, which was based on a five-element Mead-type model, minimized the sum of squared differences between the model's respons...
Saved in:
Published in: | IEEE transactions on biomedical engineering 1983-10, Vol.BME-30 (10), p.675-679 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A rapidly converging algorithm for computing values for respiratory mechanical parameters from forced random noise independance data was developed and verified. The algorithm, which was based on a five-element Mead-type model, minimized the sum of squared differences between the model's response and experimental data, while imposing a nonnegativity constraint on the parameter values. It yielded parameter values that showed excellent agreement with values obtained previously using standard nonlinear regression analysis, but required much less computer time, 10 s versus 1 h. When this algorithm is coupled with the forced random impedance data collection techniques, it provides a rapid noninvasive method for estimating respiratory inertance, central resistance, peripheral resistance, and airway compliance. The problem of estimating peripheral compliance was not solved by this algorithm. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.1983.325071 |