Loading…

A video-based system for acquiring biomechanical data synchronized with arbitrary events and activities

A video-based data acquisition and interactive multimedia data extraction system are described for measuring and synchronizing large quantities of biomechanical analog data with arbitrary events and activities. Analog signals from up to 32 channels are digitized, frequency-shift key (FSK) coded, and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 1995-09, Vol.42 (9), p.944-948
Main Authors: Yen, T.Y., Radwin, R.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A video-based data acquisition and interactive multimedia data extraction system are described for measuring and synchronizing large quantities of biomechanical analog data with arbitrary events and activities. Analog signals from up to 32 channels are digitized, frequency-shift key (FSK) coded, and recorded directly onto the audio tracks of a video tape in synchronization with the video information. The data acquisition system includes an A/D converter that digitizes up to 16 multiplexed channels of 8-b data at a fixed sample rate between 60 and 960 Hz, and an FSK modem that transfers the data onto one of two VHS high fidelity (20 Hz-20 kHz bandwidth) audio tracks. Twenty megabytes of digitized data and time codes, along with associated video and normal audio are contained on a conventional 120-min video tape. An analyst interactively reviews the video tape off-line using a computer-controlled VCR and identifies specific events that divide arbitrary activities into time segments. The computer automatically extracts the biomechanical data corresponding to each time segment for further processing or analysis. This system is useful for ergonomics, gait analysis, sports medicine, sleep laboratory, biomechanics, or any application where complex visual events are synchronized with low-frequency analog data.< >
ISSN:0018-9294
1558-2531
DOI:10.1109/10.412663