Loading…

Antigenic determinants of the OmpC porin from Salmonella typhimurium

The antigenic determinants of Salmonella typhimurium OmpC were investigated by the analysis of cyanogen bromide (CNBr)-generated porin peptides with antiporin monoclonal antibodies (MAbs). We identified six bands (f1 to f6) with estimated molecular masses of 35.5, 31.0, 25.0, 22.5, 13.8, and 10.0 kD...

Full description

Saved in:
Bibliographic Details
Published in:Infection and Immunity 1995-12, Vol.63 (12), p.4600-4605
Main Authors: Singh, S.P. (Alabama State University, Montgomery, AL.), Singh, S.R, Williams, Y.U, Jones, L, Abdullah, T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The antigenic determinants of Salmonella typhimurium OmpC were investigated by the analysis of cyanogen bromide (CNBr)-generated porin peptides with antiporin monoclonal antibodies (MAbs). We identified six bands (f1 to f6) with estimated molecular masses of 35.5, 31.0, 25.0, 22.5, 13.8, and 10.0 kDa, respectively. In addition, two small fragments (f7 and f8; 3.0 to 6.0 kDa) were detected only infrequently. The OmpC monomer or its CNBr-generated peptides were electrophoretically transferred to a polyvinylidene difluoride membrane and then subjected to amino acid composition analysis and N-terminal sequencing. A comparison of the amino acid composition data with known compositions of Escherichia coli and Salmonella typhi OmpC showed some differences; however, the amino acid sequences of 71 residues identified in S. typhimurium showed 88 and 98% identity with OmpC from E. coli and S. typhi, respectively. The screening of CNBr peptides with the 12 anti-(S. typhimurium) OmpC MAbs by Western blot (immunoblot), in conjunction with the prediction of the OmpC folding pattern based on the known three-dimensional structure of E. coli OmpF, showed that four MAbs reacted with surface-exposed epitopes on loops L2, L8, and L4 to L7, four MAbs reacted with a region in the eyelet structure on loop L3, and four MAbs reacted with the buried epitopes on transmembrane beta strands. The MAbs reacting with surface-exposed loops showed no cross-reaction with E. coli OmpC, whose sequence has diverged extensively from that of S. typhi and (probably) S. typhimurium OmpC only in regions of the externally exposed loops. In contrast. MAbs reacting with transmembrane beta strands, whose sequence is strongly conserved, showed strong cross-reaction with E. coli OmpC. These results show that comparison with the E. coli OmpF structure predicts the folding pattern of S. typhimurium OmpC rather accurately and that evolutionary divergence in sequences is confined to the external loops. The possible rol
ISSN:0019-9567
1098-5522
DOI:10.1128/iai.63.12.4600-4605.1995