Loading…

A Synthetic cryIC Gene, Encoding a Bacillus thuringiensis δ -endotoxin, Confers Spodoptera resistance in Alfalfa and Tobacco

Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ -endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation-PCR method. This simple and ec...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1996-12, Vol.93 (26), p.15012-15017
Main Authors: Strizhov, Nicolai, Keller, Menachem, Mathur, Jaideep, Koncz-Kalman, Zsuzsanna, Bosch, Dirk, Prudovsky, Evgenia, Schell, Jeff, Sneh, Baruch, Koncz, Csaba, Zilberstein, Aviah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spodoptera species, representing widespread polyphagous insect pests, are resistant to Bacillus thuringiensis δ -endotoxins used thus far as insecticides in transgenic plants. Here we describe the chemical synthesis of a cryIC gene by a novel template directed ligation-PCR method. This simple and economical method to construct large synthetic genes can be used when routine resynthesis of genes is required. Chemically phosphorylated adjacent oligonucleotides of the gene to be synthesized are assembled and ligated on a single-stranded, partially homologous template derived from a wild-type gene (cryIC in our case) by a thermostable Pfu DNA ligase using repeated cycles of melting, annealing, and ligation. The resulting synthetic DNA strands are selectively amplified by PCR with short specific flanking primers that are complementary only to the new synthetic DNA. Optimized expression of the synthetic cryIC gene in alfalfa and tobacco results in the production of 0.01-0.2% of total soluble proteins as CryIC toxin and provides protection against the Egyptian cotton leafworm (Spodoptera littoralis) and the beet armyworm (Spodoptera exigua). To facilitate selection and breeding of Spodoptera-resistant plants, the cryIC gene was linked to a pat gene, conferring resistance to the herbicide BASTA.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.93.26.15012