Loading…

Activation of RNA Polymerase II by Topologically Linked DNA-Tracking Proteins

Almost all proteins mediating transcriptional activation from promoter-distal sites attach themselves, directly or indirectly, to specific DNA sequence elements. Nevertheless, a single instance of activation by a prokaryotic topologically linked DNA-tracking protein has also been demonstrated. The s...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1997-06, Vol.94 (13), p.6718-6723
Main Authors: Ouhammouch, Mohamed, Sayre, Michael H., Kadonaga, James T., Geiduschek, E. Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Almost all proteins mediating transcriptional activation from promoter-distal sites attach themselves, directly or indirectly, to specific DNA sequence elements. Nevertheless, a single instance of activation by a prokaryotic topologically linked DNA-tracking protein has also been demonstrated. The scope of the latter class of transcriptional activators is broadened in this work. Heterologous fusion proteins linking the transcriptional activation domain of herpes simplex virus VP16 protein to the sliding clamp protein β of the Escherichia coli DNA polymerase III holoenzyme are shown to function as topologically DNA-linked activators of yeast and Drosophila RNA polymerase II. The β :VP16 fusion proteins must be loaded onto DNA by the clamp-loading E. coli γ complex to be transcriptionally active, but they do not occupy fixed sites on the DNA. The DNA-loading sites of these activators have all the properties of enhancers: they can be inverted and their locations relative to the transcriptional start site are freely adjustable.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.94.13.6718