Loading…

Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs

Describes the design, fabrication, and output capabilities of a microminiature electrical stimulator that can be injected in or near nerves and muscles. Each single channel microstimulator consists of a cylindrical glass capsule with hermetically sealed electrodes in either end (2-mm diameter/spl ti...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 1997-09, Vol.44 (9), p.781-790
Main Authors: Cameron, T., Loeb, G.E., Peck, R.A., Schulman, J.H., Strojnik, P., Troyk, P.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Describes the design, fabrication, and output capabilities of a microminiature electrical stimulator that can be injected in or near nerves and muscles. Each single channel microstimulator consists of a cylindrical glass capsule with hermetically sealed electrodes in either end (2-mm diameter/spl times/13-mm overall length). Power and digital control data can be transmitted to multiple implants (256 unique addresses) via a 2-MHz RF field created by an external AM oscillator and inductive coil. In vitro testing demonstrated accurate control of output pulsewidth (3-258 /spl mu/s in 1-/spl mu/s steps) and current (0-30 mA in two linear ranges of 16 steps each, up to 8.5 V available compliance voltage). Microstimulators were used successfully for chronic stimulation in hindlimb muscles of cats. Design and fabrication issues affecting yield and reliability of the packaging and electronics are discussed.
ISSN:0018-9294
1558-2531
DOI:10.1109/10.623047