Loading…
A patient-adaptable ECG beat classifier using a mixture of experts approach
Presents a "mixture-of-experts" (MOE) approach to develop customized electrocardiogram (EGG) beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. A small customized classifier is developed based on brief, patient-specifi...
Saved in:
Published in: | IEEE transactions on biomedical engineering 1997-09, Vol.44 (9), p.891-900 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Presents a "mixture-of-experts" (MOE) approach to develop customized electrocardiogram (EGG) beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. A small customized classifier is developed based on brief, patient-specific ECG data. It is then combined with a global classifier, which is tuned to a large ECG database of many patients, to form a MOE classifier structure. Tested with MIT/BIH arrhythmia database, the authors observe significant performance enhancement using this approach. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/10.623058 |