Loading…
A peptidoglycan recognition protein in innate immunity conserved from insects to humans
Innate nonself recognition must rely on common structures of invading microbes. In a differential display screen for up-regulated immune genes in the moth Trichoplusia ni we have found mechanisms for recognition of bacterial cell wall fragments. One bacteria-induced gene encodes a protein that, afte...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1998-08, Vol.95 (17), p.10078-10082 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Innate nonself recognition must rely on common structures of invading microbes. In a differential display screen for up-regulated immune genes in the moth Trichoplusia ni we have found mechanisms for recognition of bacterial cell wall fragments. One bacteria-induced gene encodes a protein that, after expression in the baculovirus system, was shown to be a peptidoglycan recognition protein (PGRP). It binds strongly to Gram-positive bacteria. We have also cloned the corresponding cDNA from mouse and human and shown this gene to be expressed in a variety of organs, notably organs of the immune system-i.e., bone marrow and spleen. In addition, purified recombinant murine PGRP was shown to possess peptidoglycan affinity. From our results and the sequence homology, we conclude that PGRP is a ubiquitous protein involved in innate immunity, conserved from insects to humans |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.95.17.10078 |