Loading…
General Reference and Design S-N Curves Obtained for 1.2709 Tool Steel
At present, due to advanced fatigue calculation models, it is becoming more crucial to find a reliable source for design S-N curves, especially in the case of new 3D-printed materials. Such obtained steel components are becoming very popular and are often used for important parts of dynamically load...
Saved in:
Published in: | Materials 2023-02, Vol.16 (5), p.1823 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | At present, due to advanced fatigue calculation models, it is becoming more crucial to find a reliable source for design S-N curves, especially in the case of new 3D-printed materials. Such obtained steel components are becoming very popular and are often used for important parts of dynamically loaded structures. One of the commonly used printing steels is EN 1.2709 tool steel, which has good strength properties and high abrasion resistance, and can be hardened. The research shows, however, that its fatigue strength may differ depending on the printing method, and may be characterized by a wide scatter of the fatigue life. This paper presents selected S-N curves for EN 1.2709 steel after printing with the selective laser melting method. The characteristics are compared, and conclusions are presented regarding the resistance of this material to fatigue loading, especially in the tension-compression state. A combined general mean reference and design fatigue curve is presented, which incorporates our own experimental results as well as those from the literature for the tension-compression loading state. The design curve may be implemented in the finite element method by engineers and scientists in order to calculate the fatigue life. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16051823 |