Loading…

Investigation of Gamma-Ray Shielding Properties of Bismuth Oxide Nanoparticles with a Bentonite-Gypsum Matrix

Due to the present industrial world, the risk of radioactivity is notably increasing. Thus, an appropriate shielding material needs to be designed to protect humans and the environment against radiation. In view of this, the present study aims to design new composites of the main matrix of bentonite...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2023-03, Vol.16 (5), p.2056
Main Authors: Abbas, Mahmoud I, El-Khatib, Ahmed M, Elsafi, Mohamed, El-Shimy, Sarah N, Dib, Mirvat F, Abdellatif, Hala M, Baharoon, Raqwana, Gouda, Mona M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the present industrial world, the risk of radioactivity is notably increasing. Thus, an appropriate shielding material needs to be designed to protect humans and the environment against radiation. In view of this, the present study aims to design new composites of the main matrix of bentonite-gypsum with a low-cost, abundant, and natural matrix. This main matrix was intercalated in various amounts with micro- and nanosized particles of bismuth oxide (Bi O ) as the filler. Energy dispersive X-ray analysis (EDX) recognized the chemical composition of the prepared specimen. The morphology of the bentonite-gypsum specimen was tested using scanning electron microscopy (SEM). The SEM images showed the uniformity and porosity of a cross-section of samples. The NaI (Tl) scintillation detector was used with four radioactive sources ( Am, Cs, Ba, and Co) of various photon energies. Genie 2000 software was used to determine the area under the peak of the energy spectrum observed in the presence and absence of each specimen. Then, the linear and mass attenuation coefficients were obtained. After comparing the experimental results of the mass attenuation coefficient with the theoretical values from XCOM software, it was found that the experimental results were valid. The radiation shielding parameters were computed, including the mass attenuation coefficients (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), which are dependent on the linear attenuation coefficient. In addition, the effective atomic number and buildup factors were calculated. The results of all of these parameters provided the same conclusion, which confirms the improvement of the properties of γ-ray shielding materials using a mixture of bentonite and gypsum as the main matrix, which is much better than using bentonite alone. Moreover, bentonite mixed with gypsum is a more economical means of production. Therefore, the investigated bentonite-gypsum materials have potential uses in applications such as gamma-ray shielding materials.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma16052056