Loading…

Ultrafast tunable lasers using lithium niobate integrated photonics

Early works 1 and recent advances in thin-film lithium niobate (LiNbO 3 ) on insulator have enabled low-loss photonic integrated circuits 2 , 3 , modulators with improved half-wave voltage 4 , 5 , electro-optic frequency combs 6 and on-chip electro-optic devices, with applications ranging from micro...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2023-03, Vol.615 (7952), p.411-417
Main Authors: Snigirev, Viacheslav, Riedhauser, Annina, Lihachev, Grigory, Churaev, Mikhail, Riemensberger, Johann, Wang, Rui Ning, Siddharth, Anat, Huang, Guanhao, Möhl, Charles, Popoff, Youri, Drechsler, Ute, Caimi, Daniele, Hönl, Simon, Liu, Junqiu, Seidler, Paul, Kippenberg, Tobias J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783
cites cdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783
container_end_page 417
container_issue 7952
container_start_page 411
container_title Nature (London)
container_volume 615
creator Snigirev, Viacheslav
Riedhauser, Annina
Lihachev, Grigory
Churaev, Mikhail
Riemensberger, Johann
Wang, Rui Ning
Siddharth, Anat
Huang, Guanhao
Möhl, Charles
Popoff, Youri
Drechsler, Ute
Caimi, Daniele
Hönl, Simon
Liu, Junqiu
Seidler, Paul
Kippenberg, Tobias J.
description Early works 1 and recent advances in thin-film lithium niobate (LiNbO 3 ) on insulator have enabled low-loss photonic integrated circuits 2 , 3 , modulators with improved half-wave voltage 4 , 5 , electro-optic frequency combs 6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces 7 . Although recent advances have demonstrated tunable integrated lasers based on LiNbO 3 (refs. 8 , 9 ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si 3 N 4 )–LiNbO 3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si 3 N 4 photonic integrated circuits with thin-film LiNbO 3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration 10 , featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10 15  hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si 3 N 4 photonic integrated circuits with LiNbO 3 creates a platform that combines the individual advantages of thin-film LiNbO 3 with those of Si 3 N 4 , which show precise lithographic control, mature manufacturing and ultralow loss 11 , 12 . A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.
doi_str_mv 10.1038/s41586-023-05724-2
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788794946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</originalsourceid><addsrcrecordid>eNp9kU1v3CAQhlGVqrvZ9g_kEFnKpRe3gDGDT1G0apNKK_XSnBFgvEvkhQ3gSPn3IXWar0NPjDTPvMzoQeiE4G8EN-J7YqQVvMa0qXELlNX0A1oSBrxmXMARWmJMRY1FwxfoOKUbjHFLgH1Ci4Z3lHJClmh9PeaoBpVylSev9GirUSUbUzUl57fV6PLOTfvKu6BVtpXz2W5jqfrqsAs5eGfSZ_RxUGOyX57eFbr--ePP-qre_L78tb7Y1IZBm-vWGtvQTomBaGU73RjbD9rQXjHFBeugA1CcUMY1F6Zn0ImBD4oBaN0PIJoVOp9zD5Pe295YX1Yf5SG6vYr3Mign33a828ltuJMEYwIthpLw9SkhhtvJpiz3Lhk7jsrbMCVJQQjoWMd4Qc_eoTdhir7c90gBh1YUCStEZ8rEkFK0w_M2BMtHSXKWJIsk-VeSpGXo9PUdzyP_rBSgmYFUWn5r48vf_4l9AE_WnvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787675810</pqid></control><display><type>article</type><title>Ultrafast tunable lasers using lithium niobate integrated photonics</title><source>Nature Journals Online</source><creator>Snigirev, Viacheslav ; Riedhauser, Annina ; Lihachev, Grigory ; Churaev, Mikhail ; Riemensberger, Johann ; Wang, Rui Ning ; Siddharth, Anat ; Huang, Guanhao ; Möhl, Charles ; Popoff, Youri ; Drechsler, Ute ; Caimi, Daniele ; Hönl, Simon ; Liu, Junqiu ; Seidler, Paul ; Kippenberg, Tobias J.</creator><creatorcontrib>Snigirev, Viacheslav ; Riedhauser, Annina ; Lihachev, Grigory ; Churaev, Mikhail ; Riemensberger, Johann ; Wang, Rui Ning ; Siddharth, Anat ; Huang, Guanhao ; Möhl, Charles ; Popoff, Youri ; Drechsler, Ute ; Caimi, Daniele ; Hönl, Simon ; Liu, Junqiu ; Seidler, Paul ; Kippenberg, Tobias J.</creatorcontrib><description>Early works 1 and recent advances in thin-film lithium niobate (LiNbO 3 ) on insulator have enabled low-loss photonic integrated circuits 2 , 3 , modulators with improved half-wave voltage 4 , 5 , electro-optic frequency combs 6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces 7 . Although recent advances have demonstrated tunable integrated lasers based on LiNbO 3 (refs. 8 , 9 ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si 3 N 4 )–LiNbO 3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si 3 N 4 photonic integrated circuits with thin-film LiNbO 3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration 10 , featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10 15  hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si 3 N 4 photonic integrated circuits with LiNbO 3 creates a platform that combines the individual advantages of thin-film LiNbO 3 with those of Si 3 N 4 , which show precise lithographic control, mature manufacturing and ultralow loss 11 , 12 . A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-05724-2</identifier><identifier>PMID: 36922611</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1085 ; 639/624/1075/401 ; Decibels ; Etching ; Humanities and Social Sciences ; Hybrid modes ; Integrated circuits ; Laser ranging ; Lasers ; Lidar ; Lithium ; Lithium niobates ; Microwave photonics ; Modulators ; multidisciplinary ; Optics ; Photonics ; Propagation ; Science ; Science (multidisciplinary) ; Semiconductor lasers ; Semiconductors ; Silicon ; Silicon nitride ; Thin films ; Tunable lasers ; Tuning</subject><ispartof>Nature (London), 2023-03, Vol.615 (7952), p.411-417</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 16, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</citedby><cites>FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</cites><orcidid>0000-0002-3408-886X ; 0000-0003-2405-6028 ; 0000-0003-4066-7304 ; 0000-0001-7803-804X ; 0000-0002-3468-6501 ; 0000-0002-1084-4640 ; 0000-0003-3483-4700 ; 0000-0002-5704-3971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36922611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snigirev, Viacheslav</creatorcontrib><creatorcontrib>Riedhauser, Annina</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Huang, Guanhao</creatorcontrib><creatorcontrib>Möhl, Charles</creatorcontrib><creatorcontrib>Popoff, Youri</creatorcontrib><creatorcontrib>Drechsler, Ute</creatorcontrib><creatorcontrib>Caimi, Daniele</creatorcontrib><creatorcontrib>Hönl, Simon</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Seidler, Paul</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><title>Ultrafast tunable lasers using lithium niobate integrated photonics</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Early works 1 and recent advances in thin-film lithium niobate (LiNbO 3 ) on insulator have enabled low-loss photonic integrated circuits 2 , 3 , modulators with improved half-wave voltage 4 , 5 , electro-optic frequency combs 6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces 7 . Although recent advances have demonstrated tunable integrated lasers based on LiNbO 3 (refs. 8 , 9 ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si 3 N 4 )–LiNbO 3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si 3 N 4 photonic integrated circuits with thin-film LiNbO 3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration 10 , featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10 15  hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si 3 N 4 photonic integrated circuits with LiNbO 3 creates a platform that combines the individual advantages of thin-film LiNbO 3 with those of Si 3 N 4 , which show precise lithographic control, mature manufacturing and ultralow loss 11 , 12 . A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.</description><subject>639/624/1020/1085</subject><subject>639/624/1075/401</subject><subject>Decibels</subject><subject>Etching</subject><subject>Humanities and Social Sciences</subject><subject>Hybrid modes</subject><subject>Integrated circuits</subject><subject>Laser ranging</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>Microwave photonics</subject><subject>Modulators</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Photonics</subject><subject>Propagation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor lasers</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Thin films</subject><subject>Tunable lasers</subject><subject>Tuning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v3CAQhlGVqrvZ9g_kEFnKpRe3gDGDT1G0apNKK_XSnBFgvEvkhQ3gSPn3IXWar0NPjDTPvMzoQeiE4G8EN-J7YqQVvMa0qXELlNX0A1oSBrxmXMARWmJMRY1FwxfoOKUbjHFLgH1Ci4Z3lHJClmh9PeaoBpVylSev9GirUSUbUzUl57fV6PLOTfvKu6BVtpXz2W5jqfrqsAs5eGfSZ_RxUGOyX57eFbr--ePP-qre_L78tb7Y1IZBm-vWGtvQTomBaGU73RjbD9rQXjHFBeugA1CcUMY1F6Zn0ImBD4oBaN0PIJoVOp9zD5Pe295YX1Yf5SG6vYr3Mign33a828ltuJMEYwIthpLw9SkhhtvJpiz3Lhk7jsrbMCVJQQjoWMd4Qc_eoTdhir7c90gBh1YUCStEZ8rEkFK0w_M2BMtHSXKWJIsk-VeSpGXo9PUdzyP_rBSgmYFUWn5r48vf_4l9AE_WnvQ</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Snigirev, Viacheslav</creator><creator>Riedhauser, Annina</creator><creator>Lihachev, Grigory</creator><creator>Churaev, Mikhail</creator><creator>Riemensberger, Johann</creator><creator>Wang, Rui Ning</creator><creator>Siddharth, Anat</creator><creator>Huang, Guanhao</creator><creator>Möhl, Charles</creator><creator>Popoff, Youri</creator><creator>Drechsler, Ute</creator><creator>Caimi, Daniele</creator><creator>Hönl, Simon</creator><creator>Liu, Junqiu</creator><creator>Seidler, Paul</creator><creator>Kippenberg, Tobias J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0003-2405-6028</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0001-7803-804X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-1084-4640</orcidid><orcidid>https://orcid.org/0000-0003-3483-4700</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid></search><sort><creationdate>20230316</creationdate><title>Ultrafast tunable lasers using lithium niobate integrated photonics</title><author>Snigirev, Viacheslav ; Riedhauser, Annina ; Lihachev, Grigory ; Churaev, Mikhail ; Riemensberger, Johann ; Wang, Rui Ning ; Siddharth, Anat ; Huang, Guanhao ; Möhl, Charles ; Popoff, Youri ; Drechsler, Ute ; Caimi, Daniele ; Hönl, Simon ; Liu, Junqiu ; Seidler, Paul ; Kippenberg, Tobias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1020/1085</topic><topic>639/624/1075/401</topic><topic>Decibels</topic><topic>Etching</topic><topic>Humanities and Social Sciences</topic><topic>Hybrid modes</topic><topic>Integrated circuits</topic><topic>Laser ranging</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>Microwave photonics</topic><topic>Modulators</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Photonics</topic><topic>Propagation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor lasers</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Thin films</topic><topic>Tunable lasers</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snigirev, Viacheslav</creatorcontrib><creatorcontrib>Riedhauser, Annina</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Huang, Guanhao</creatorcontrib><creatorcontrib>Möhl, Charles</creatorcontrib><creatorcontrib>Popoff, Youri</creatorcontrib><creatorcontrib>Drechsler, Ute</creatorcontrib><creatorcontrib>Caimi, Daniele</creatorcontrib><creatorcontrib>Hönl, Simon</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Seidler, Paul</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snigirev, Viacheslav</au><au>Riedhauser, Annina</au><au>Lihachev, Grigory</au><au>Churaev, Mikhail</au><au>Riemensberger, Johann</au><au>Wang, Rui Ning</au><au>Siddharth, Anat</au><au>Huang, Guanhao</au><au>Möhl, Charles</au><au>Popoff, Youri</au><au>Drechsler, Ute</au><au>Caimi, Daniele</au><au>Hönl, Simon</au><au>Liu, Junqiu</au><au>Seidler, Paul</au><au>Kippenberg, Tobias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast tunable lasers using lithium niobate integrated photonics</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-03-16</date><risdate>2023</risdate><volume>615</volume><issue>7952</issue><spage>411</spage><epage>417</epage><pages>411-417</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Early works 1 and recent advances in thin-film lithium niobate (LiNbO 3 ) on insulator have enabled low-loss photonic integrated circuits 2 , 3 , modulators with improved half-wave voltage 4 , 5 , electro-optic frequency combs 6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces 7 . Although recent advances have demonstrated tunable integrated lasers based on LiNbO 3 (refs. 8 , 9 ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si 3 N 4 )–LiNbO 3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si 3 N 4 photonic integrated circuits with thin-film LiNbO 3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration 10 , featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10 15  hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si 3 N 4 photonic integrated circuits with LiNbO 3 creates a platform that combines the individual advantages of thin-film LiNbO 3 with those of Si 3 N 4 , which show precise lithographic control, mature manufacturing and ultralow loss 11 , 12 . A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36922611</pmid><doi>10.1038/s41586-023-05724-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0003-2405-6028</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0001-7803-804X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-1084-4640</orcidid><orcidid>https://orcid.org/0000-0003-3483-4700</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-03, Vol.615 (7952), p.411-417
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017507
source Nature Journals Online
subjects 639/624/1020/1085
639/624/1075/401
Decibels
Etching
Humanities and Social Sciences
Hybrid modes
Integrated circuits
Laser ranging
Lasers
Lidar
Lithium
Lithium niobates
Microwave photonics
Modulators
multidisciplinary
Optics
Photonics
Propagation
Science
Science (multidisciplinary)
Semiconductor lasers
Semiconductors
Silicon
Silicon nitride
Thin films
Tunable lasers
Tuning
title Ultrafast tunable lasers using lithium niobate integrated photonics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20tunable%20lasers%20using%20lithium%20niobate%20integrated%20photonics&rft.jtitle=Nature%20(London)&rft.au=Snigirev,%20Viacheslav&rft.date=2023-03-16&rft.volume=615&rft.issue=7952&rft.spage=411&rft.epage=417&rft.pages=411-417&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-05724-2&rft_dat=%3Cproquest_pubme%3E2788794946%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787675810&rft_id=info:pmid/36922611&rfr_iscdi=true