Loading…
Ultrafast tunable lasers using lithium niobate integrated photonics
Early works 1 and recent advances in thin-film lithium niobate (LiNbO 3 ) on insulator have enabled low-loss photonic integrated circuits 2 , 3 , modulators with improved half-wave voltage 4 , 5 , electro-optic frequency combs 6 and on-chip electro-optic devices, with applications ranging from micro...
Saved in:
Published in: | Nature (London) 2023-03, Vol.615 (7952), p.411-417 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783 |
container_end_page | 417 |
container_issue | 7952 |
container_start_page | 411 |
container_title | Nature (London) |
container_volume | 615 |
creator | Snigirev, Viacheslav Riedhauser, Annina Lihachev, Grigory Churaev, Mikhail Riemensberger, Johann Wang, Rui Ning Siddharth, Anat Huang, Guanhao Möhl, Charles Popoff, Youri Drechsler, Ute Caimi, Daniele Hönl, Simon Liu, Junqiu Seidler, Paul Kippenberg, Tobias J. |
description | Early works
1
and recent advances in thin-film lithium niobate (LiNbO
3
) on insulator have enabled low-loss photonic integrated circuits
2
,
3
, modulators with improved half-wave voltage
4
,
5
, electro-optic frequency combs
6
and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces
7
. Although recent advances have demonstrated tunable integrated lasers based on LiNbO
3
(refs.
8
,
9
), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si
3
N
4
)–LiNbO
3
photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si
3
N
4
photonic integrated circuits with thin-film LiNbO
3
through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration
10
, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10
15
hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si
3
N
4
photonic integrated circuits with LiNbO
3
creates a platform that combines the individual advantages of thin-film LiNbO
3
with those of Si
3
N
4
, which show precise lithographic control, mature manufacturing and ultralow loss
11
,
12
.
A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications. |
doi_str_mv | 10.1038/s41586-023-05724-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788794946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</originalsourceid><addsrcrecordid>eNp9kU1v3CAQhlGVqrvZ9g_kEFnKpRe3gDGDT1G0apNKK_XSnBFgvEvkhQ3gSPn3IXWar0NPjDTPvMzoQeiE4G8EN-J7YqQVvMa0qXELlNX0A1oSBrxmXMARWmJMRY1FwxfoOKUbjHFLgH1Ci4Z3lHJClmh9PeaoBpVylSev9GirUSUbUzUl57fV6PLOTfvKu6BVtpXz2W5jqfrqsAs5eGfSZ_RxUGOyX57eFbr--ePP-qre_L78tb7Y1IZBm-vWGtvQTomBaGU73RjbD9rQXjHFBeugA1CcUMY1F6Zn0ImBD4oBaN0PIJoVOp9zD5Pe295YX1Yf5SG6vYr3Mign33a828ltuJMEYwIthpLw9SkhhtvJpiz3Lhk7jsrbMCVJQQjoWMd4Qc_eoTdhir7c90gBh1YUCStEZ8rEkFK0w_M2BMtHSXKWJIsk-VeSpGXo9PUdzyP_rBSgmYFUWn5r48vf_4l9AE_WnvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787675810</pqid></control><display><type>article</type><title>Ultrafast tunable lasers using lithium niobate integrated photonics</title><source>Nature Journals Online</source><creator>Snigirev, Viacheslav ; Riedhauser, Annina ; Lihachev, Grigory ; Churaev, Mikhail ; Riemensberger, Johann ; Wang, Rui Ning ; Siddharth, Anat ; Huang, Guanhao ; Möhl, Charles ; Popoff, Youri ; Drechsler, Ute ; Caimi, Daniele ; Hönl, Simon ; Liu, Junqiu ; Seidler, Paul ; Kippenberg, Tobias J.</creator><creatorcontrib>Snigirev, Viacheslav ; Riedhauser, Annina ; Lihachev, Grigory ; Churaev, Mikhail ; Riemensberger, Johann ; Wang, Rui Ning ; Siddharth, Anat ; Huang, Guanhao ; Möhl, Charles ; Popoff, Youri ; Drechsler, Ute ; Caimi, Daniele ; Hönl, Simon ; Liu, Junqiu ; Seidler, Paul ; Kippenberg, Tobias J.</creatorcontrib><description>Early works
1
and recent advances in thin-film lithium niobate (LiNbO
3
) on insulator have enabled low-loss photonic integrated circuits
2
,
3
, modulators with improved half-wave voltage
4
,
5
, electro-optic frequency combs
6
and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces
7
. Although recent advances have demonstrated tunable integrated lasers based on LiNbO
3
(refs.
8
,
9
), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si
3
N
4
)–LiNbO
3
photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si
3
N
4
photonic integrated circuits with thin-film LiNbO
3
through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration
10
, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10
15
hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si
3
N
4
photonic integrated circuits with LiNbO
3
creates a platform that combines the individual advantages of thin-film LiNbO
3
with those of Si
3
N
4
, which show precise lithographic control, mature manufacturing and ultralow loss
11
,
12
.
A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-05724-2</identifier><identifier>PMID: 36922611</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1085 ; 639/624/1075/401 ; Decibels ; Etching ; Humanities and Social Sciences ; Hybrid modes ; Integrated circuits ; Laser ranging ; Lasers ; Lidar ; Lithium ; Lithium niobates ; Microwave photonics ; Modulators ; multidisciplinary ; Optics ; Photonics ; Propagation ; Science ; Science (multidisciplinary) ; Semiconductor lasers ; Semiconductors ; Silicon ; Silicon nitride ; Thin films ; Tunable lasers ; Tuning</subject><ispartof>Nature (London), 2023-03, Vol.615 (7952), p.411-417</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Mar 16, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</citedby><cites>FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</cites><orcidid>0000-0002-3408-886X ; 0000-0003-2405-6028 ; 0000-0003-4066-7304 ; 0000-0001-7803-804X ; 0000-0002-3468-6501 ; 0000-0002-1084-4640 ; 0000-0003-3483-4700 ; 0000-0002-5704-3971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36922611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snigirev, Viacheslav</creatorcontrib><creatorcontrib>Riedhauser, Annina</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Huang, Guanhao</creatorcontrib><creatorcontrib>Möhl, Charles</creatorcontrib><creatorcontrib>Popoff, Youri</creatorcontrib><creatorcontrib>Drechsler, Ute</creatorcontrib><creatorcontrib>Caimi, Daniele</creatorcontrib><creatorcontrib>Hönl, Simon</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Seidler, Paul</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><title>Ultrafast tunable lasers using lithium niobate integrated photonics</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Early works
1
and recent advances in thin-film lithium niobate (LiNbO
3
) on insulator have enabled low-loss photonic integrated circuits
2
,
3
, modulators with improved half-wave voltage
4
,
5
, electro-optic frequency combs
6
and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces
7
. Although recent advances have demonstrated tunable integrated lasers based on LiNbO
3
(refs.
8
,
9
), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si
3
N
4
)–LiNbO
3
photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si
3
N
4
photonic integrated circuits with thin-film LiNbO
3
through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration
10
, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10
15
hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si
3
N
4
photonic integrated circuits with LiNbO
3
creates a platform that combines the individual advantages of thin-film LiNbO
3
with those of Si
3
N
4
, which show precise lithographic control, mature manufacturing and ultralow loss
11
,
12
.
A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.</description><subject>639/624/1020/1085</subject><subject>639/624/1075/401</subject><subject>Decibels</subject><subject>Etching</subject><subject>Humanities and Social Sciences</subject><subject>Hybrid modes</subject><subject>Integrated circuits</subject><subject>Laser ranging</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Lithium</subject><subject>Lithium niobates</subject><subject>Microwave photonics</subject><subject>Modulators</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Photonics</subject><subject>Propagation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductor lasers</subject><subject>Semiconductors</subject><subject>Silicon</subject><subject>Silicon nitride</subject><subject>Thin films</subject><subject>Tunable lasers</subject><subject>Tuning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v3CAQhlGVqrvZ9g_kEFnKpRe3gDGDT1G0apNKK_XSnBFgvEvkhQ3gSPn3IXWar0NPjDTPvMzoQeiE4G8EN-J7YqQVvMa0qXELlNX0A1oSBrxmXMARWmJMRY1FwxfoOKUbjHFLgH1Ci4Z3lHJClmh9PeaoBpVylSev9GirUSUbUzUl57fV6PLOTfvKu6BVtpXz2W5jqfrqsAs5eGfSZ_RxUGOyX57eFbr--ePP-qre_L78tb7Y1IZBm-vWGtvQTomBaGU73RjbD9rQXjHFBeugA1CcUMY1F6Zn0ImBD4oBaN0PIJoVOp9zD5Pe295YX1Yf5SG6vYr3Mign33a828ltuJMEYwIthpLw9SkhhtvJpiz3Lhk7jsrbMCVJQQjoWMd4Qc_eoTdhir7c90gBh1YUCStEZ8rEkFK0w_M2BMtHSXKWJIsk-VeSpGXo9PUdzyP_rBSgmYFUWn5r48vf_4l9AE_WnvQ</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Snigirev, Viacheslav</creator><creator>Riedhauser, Annina</creator><creator>Lihachev, Grigory</creator><creator>Churaev, Mikhail</creator><creator>Riemensberger, Johann</creator><creator>Wang, Rui Ning</creator><creator>Siddharth, Anat</creator><creator>Huang, Guanhao</creator><creator>Möhl, Charles</creator><creator>Popoff, Youri</creator><creator>Drechsler, Ute</creator><creator>Caimi, Daniele</creator><creator>Hönl, Simon</creator><creator>Liu, Junqiu</creator><creator>Seidler, Paul</creator><creator>Kippenberg, Tobias J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0003-2405-6028</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0001-7803-804X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-1084-4640</orcidid><orcidid>https://orcid.org/0000-0003-3483-4700</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid></search><sort><creationdate>20230316</creationdate><title>Ultrafast tunable lasers using lithium niobate integrated photonics</title><author>Snigirev, Viacheslav ; Riedhauser, Annina ; Lihachev, Grigory ; Churaev, Mikhail ; Riemensberger, Johann ; Wang, Rui Ning ; Siddharth, Anat ; Huang, Guanhao ; Möhl, Charles ; Popoff, Youri ; Drechsler, Ute ; Caimi, Daniele ; Hönl, Simon ; Liu, Junqiu ; Seidler, Paul ; Kippenberg, Tobias J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/624/1020/1085</topic><topic>639/624/1075/401</topic><topic>Decibels</topic><topic>Etching</topic><topic>Humanities and Social Sciences</topic><topic>Hybrid modes</topic><topic>Integrated circuits</topic><topic>Laser ranging</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Lithium</topic><topic>Lithium niobates</topic><topic>Microwave photonics</topic><topic>Modulators</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Photonics</topic><topic>Propagation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductor lasers</topic><topic>Semiconductors</topic><topic>Silicon</topic><topic>Silicon nitride</topic><topic>Thin films</topic><topic>Tunable lasers</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snigirev, Viacheslav</creatorcontrib><creatorcontrib>Riedhauser, Annina</creatorcontrib><creatorcontrib>Lihachev, Grigory</creatorcontrib><creatorcontrib>Churaev, Mikhail</creatorcontrib><creatorcontrib>Riemensberger, Johann</creatorcontrib><creatorcontrib>Wang, Rui Ning</creatorcontrib><creatorcontrib>Siddharth, Anat</creatorcontrib><creatorcontrib>Huang, Guanhao</creatorcontrib><creatorcontrib>Möhl, Charles</creatorcontrib><creatorcontrib>Popoff, Youri</creatorcontrib><creatorcontrib>Drechsler, Ute</creatorcontrib><creatorcontrib>Caimi, Daniele</creatorcontrib><creatorcontrib>Hönl, Simon</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Seidler, Paul</creatorcontrib><creatorcontrib>Kippenberg, Tobias J.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snigirev, Viacheslav</au><au>Riedhauser, Annina</au><au>Lihachev, Grigory</au><au>Churaev, Mikhail</au><au>Riemensberger, Johann</au><au>Wang, Rui Ning</au><au>Siddharth, Anat</au><au>Huang, Guanhao</au><au>Möhl, Charles</au><au>Popoff, Youri</au><au>Drechsler, Ute</au><au>Caimi, Daniele</au><au>Hönl, Simon</au><au>Liu, Junqiu</au><au>Seidler, Paul</au><au>Kippenberg, Tobias J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast tunable lasers using lithium niobate integrated photonics</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-03-16</date><risdate>2023</risdate><volume>615</volume><issue>7952</issue><spage>411</spage><epage>417</epage><pages>411-417</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Early works
1
and recent advances in thin-film lithium niobate (LiNbO
3
) on insulator have enabled low-loss photonic integrated circuits
2
,
3
, modulators with improved half-wave voltage
4
,
5
, electro-optic frequency combs
6
and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces
7
. Although recent advances have demonstrated tunable integrated lasers based on LiNbO
3
(refs.
8
,
9
), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si
3
N
4
)–LiNbO
3
photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si
3
N
4
photonic integrated circuits with thin-film LiNbO
3
through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration
10
, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 10
15
hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si
3
N
4
photonic integrated circuits with LiNbO
3
creates a platform that combines the individual advantages of thin-film LiNbO
3
with those of Si
3
N
4
, which show precise lithographic control, mature manufacturing and ultralow loss
11
,
12
.
A frequency-tunable laser based on a hybrid silicon nitride and lithium niobate integrated photonic platform has a fast tuning rate and could be used for optical ranging applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36922611</pmid><doi>10.1038/s41586-023-05724-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3408-886X</orcidid><orcidid>https://orcid.org/0000-0003-2405-6028</orcidid><orcidid>https://orcid.org/0000-0003-4066-7304</orcidid><orcidid>https://orcid.org/0000-0001-7803-804X</orcidid><orcidid>https://orcid.org/0000-0002-3468-6501</orcidid><orcidid>https://orcid.org/0000-0002-1084-4640</orcidid><orcidid>https://orcid.org/0000-0003-3483-4700</orcidid><orcidid>https://orcid.org/0000-0002-5704-3971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2023-03, Vol.615 (7952), p.411-417 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017507 |
source | Nature Journals Online |
subjects | 639/624/1020/1085 639/624/1075/401 Decibels Etching Humanities and Social Sciences Hybrid modes Integrated circuits Laser ranging Lasers Lidar Lithium Lithium niobates Microwave photonics Modulators multidisciplinary Optics Photonics Propagation Science Science (multidisciplinary) Semiconductor lasers Semiconductors Silicon Silicon nitride Thin films Tunable lasers Tuning |
title | Ultrafast tunable lasers using lithium niobate integrated photonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20tunable%20lasers%20using%20lithium%20niobate%20integrated%20photonics&rft.jtitle=Nature%20(London)&rft.au=Snigirev,%20Viacheslav&rft.date=2023-03-16&rft.volume=615&rft.issue=7952&rft.spage=411&rft.epage=417&rft.pages=411-417&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-05724-2&rft_dat=%3Cproquest_pubme%3E2788794946%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-5ece329a8f1bae9b3cedfbc2da4a68497977a61246b68cd4798f6fa477bbdf783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2787675810&rft_id=info:pmid/36922611&rfr_iscdi=true |