Loading…
Physical and biological dosimetric margin according to prescription method for stereotactic body radiation therapy
Abstract This study aimed to expand the biological conversion factor (BCF) model, which converts the physical dosimetric margin (PDM) to the biological dosimetric margin (BDM) for point prescription with 3-dimensional conformal radiation therapy (3DCRT) and the marginal prescription method with volu...
Saved in:
Published in: | Journal of radiation research 2023-03, Vol.64 (2), p.328-334 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
This study aimed to expand the biological conversion factor (BCF) model, which converts the physical dosimetric margin (PDM) to the biological dosimetric margin (BDM) for point prescription with 3-dimensional conformal radiation therapy (3DCRT) and the marginal prescription method with volumetric-modulated arc radiotherapy (VMAT). The VMAT of the marginal prescription and the 3DCRT of the point prescription with lung stereotactic body radiation therapy (SBRT) by using RayStation were planned. The biological equivalent dose (BED) for a dose per fraction (DPF) of 3–20 Gy was calculated from these plans. The dose was perturbed with the calculation using a 1-mm step isocenter shift. The dose covering 95% of the target was greater than or equal to 90% of the prescribed physical dose, and the BED were defined as the PDM and BDM, respectively. The BCF was created as a function of the DPF. The PDM and BDM for all DPFs were larger with the point prescription method than with the marginal prescription method. The marginal prescription method with a 60% isodose line had a larger PDM and BDM. The BCF with the point prescription was smaller than that with the marginal prescription in the left–right (LR), anterior–posterior (AP) and cranio–caudal (CC) directions. In the marginal prescription method, the 60% isodose line had a higher BCF. In conclusion, the improved BCF method could be converted to BDM for point prescription with 3DCRT and marginal prescription method with VMAT, which is required for stereotactic radiation therapy in radiobiology-based treatment planning. |
---|---|
ISSN: | 0449-3060 1349-9157 |
DOI: | 10.1093/jrr/rrac097 |