Loading…
Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort
Abstract Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation...
Saved in:
Published in: | Brain communications 2023, Vol.5 (2), p.fcad061 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033 |
---|---|
cites | cdi_FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033 |
container_end_page | |
container_issue | 2 |
container_start_page | fcad061 |
container_title | Brain communications |
container_volume | 5 |
creator | Bocchetta, Martina Todd, Emily G Bouzigues, Arabella Cash, David M Nicholas, Jennifer M Convery, Rhian S Russell, Lucy L Thomas, David L Malone, Ian B Iglesias, Juan Eugenio van Swieten, John C Jiskoot, Lize C Seelaar, Harro Borroni, Barbara Galimberti, Daniela Sanchez-Valle, Raquel Laforce, Robert Moreno, Fermin Synofzik, Matthis Graff, Caroline Masellis, Mario Tartaglia, Maria Carmela Rowe, James B Vandenberghe, Rik Finger, Elizabeth Tagliavini, Fabrizio de Mendonça, Alexandre Santana, Isabel Butler, Chris R Ducharme, Simon Gerhard, Alexander Danek, Adrian Levin, Johannes Otto, Markus Sorbi, Sandro Le Ber, Isabelle Pasquier, Florence Rohrer, Jonathan D |
description | Abstract
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as ‘normal’ or ‘abnormal’ based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the ‘normal’ and ‘abnormal’ groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.
Bocchetta et al. quantified brain anomalies on |
doi_str_mv | 10.1093/braincomms/fcad061 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10036293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/braincomms/fcad061</oup_id><sourcerecordid>2791707128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033</originalsourceid><addsrcrecordid>eNqNkstu3CAUhq2qVRMleYEuKpbtws0BbGx3U0VRLiNNGqmXNWIwzFAZcAGPlOfpixZ3JpdWXWR10OH7f_4jTlG8wfABQ0dPV0EYJ7218VRL0QPDL4pDwigpMemal0_OB8VJjD8AgNRVTbv2dXFAWdcAVOyw-PU1hUmmKYgB3XxZoDGo3sgUkRyMMzJ3x-DXQcVovEPGzUC8s2PyViQj0Vo5NVcdvEs-KTv62apXVrlkxEekjeuNW8eZsChtFLq6-PxHcvl_CVo4k0syW4Wk3_iQjotXWgxRnezrUfH98uLb-XW5vL1anJ8tS1ljmkoGjGKsdd2AqNsaqqoROg_MQGshOyVWpCUktxju6lbXpIV-pYmoMdG4B0qPik8733FaWdXLHCcH42MwVoQ77oXhf984s-Frv-UYgDLSzQ7vdw6bf3TXZ0s-96DKURtGtziz7_avBf9zUjFxa6JUwyCc8lPkpOlwAw0mbUbJDpXBxxiUfvDGwOdt4I_bwPfbkEVvn07zILn_-wyUO8BP43MMfwP_w8kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791707128</pqid></control><display><type>article</type><title>Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Bocchetta, Martina ; Todd, Emily G ; Bouzigues, Arabella ; Cash, David M ; Nicholas, Jennifer M ; Convery, Rhian S ; Russell, Lucy L ; Thomas, David L ; Malone, Ian B ; Iglesias, Juan Eugenio ; van Swieten, John C ; Jiskoot, Lize C ; Seelaar, Harro ; Borroni, Barbara ; Galimberti, Daniela ; Sanchez-Valle, Raquel ; Laforce, Robert ; Moreno, Fermin ; Synofzik, Matthis ; Graff, Caroline ; Masellis, Mario ; Tartaglia, Maria Carmela ; Rowe, James B ; Vandenberghe, Rik ; Finger, Elizabeth ; Tagliavini, Fabrizio ; de Mendonça, Alexandre ; Santana, Isabel ; Butler, Chris R ; Ducharme, Simon ; Gerhard, Alexander ; Danek, Adrian ; Levin, Johannes ; Otto, Markus ; Sorbi, Sandro ; Le Ber, Isabelle ; Pasquier, Florence ; Rohrer, Jonathan D</creator><creatorcontrib>Bocchetta, Martina ; Todd, Emily G ; Bouzigues, Arabella ; Cash, David M ; Nicholas, Jennifer M ; Convery, Rhian S ; Russell, Lucy L ; Thomas, David L ; Malone, Ian B ; Iglesias, Juan Eugenio ; van Swieten, John C ; Jiskoot, Lize C ; Seelaar, Harro ; Borroni, Barbara ; Galimberti, Daniela ; Sanchez-Valle, Raquel ; Laforce, Robert ; Moreno, Fermin ; Synofzik, Matthis ; Graff, Caroline ; Masellis, Mario ; Tartaglia, Maria Carmela ; Rowe, James B ; Vandenberghe, Rik ; Finger, Elizabeth ; Tagliavini, Fabrizio ; de Mendonça, Alexandre ; Santana, Isabel ; Butler, Chris R ; Ducharme, Simon ; Gerhard, Alexander ; Danek, Adrian ; Levin, Johannes ; Otto, Markus ; Sorbi, Sandro ; Le Ber, Isabelle ; Pasquier, Florence ; Rohrer, Jonathan D ; Genetic Frontotemporal dementia Initiative (GENFI)</creatorcontrib><description>Abstract
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as ‘normal’ or ‘abnormal’ based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the ‘normal’ and ‘abnormal’ groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.
Bocchetta et al. quantified brain anomalies on MRI in a large cohort of C9orf72, MAPT, and GRN mutation carriers. They defined the imaging markers associated with the largest clinical and behavioral changes over one year in presymptomatic carriers, providing important data to inform participants’ stratification in trials.
Graphical Abstract
Graphical abstract</description><identifier>ISSN: 2632-1297</identifier><identifier>EISSN: 2632-1297</identifier><identifier>DOI: 10.1093/braincomms/fcad061</identifier><identifier>PMID: 36970046</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Life Sciences ; Neurons and Cognition ; Original</subject><ispartof>Brain communications, 2023, Vol.5 (2), p.fcad061</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033</citedby><cites>FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033</cites><orcidid>0000-0001-8857-5383 ; 0000-0001-7750-896X ; 0000-0001-7833-616X ; 0000-0003-1551-5691 ; 0000-0001-7512-7856 ; 0000-0003-1989-7527 ; 0000-0002-9949-2951 ; 0000-0001-9880-9788 ; 0000-0002-2280-7273 ; 0000-0002-7309-1113 ; 0000-0002-8071-6062 ; 0000-0003-1814-5024 ; 0000-0001-6237-2502 ; 0000-0002-1120-1858 ; 0000-0001-9340-9814 ; 0000-0002-0941-3990 ; 0000-0002-6630-394X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10036293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,4010,27902,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36970046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-04513763$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bocchetta, Martina</creatorcontrib><creatorcontrib>Todd, Emily G</creatorcontrib><creatorcontrib>Bouzigues, Arabella</creatorcontrib><creatorcontrib>Cash, David M</creatorcontrib><creatorcontrib>Nicholas, Jennifer M</creatorcontrib><creatorcontrib>Convery, Rhian S</creatorcontrib><creatorcontrib>Russell, Lucy L</creatorcontrib><creatorcontrib>Thomas, David L</creatorcontrib><creatorcontrib>Malone, Ian B</creatorcontrib><creatorcontrib>Iglesias, Juan Eugenio</creatorcontrib><creatorcontrib>van Swieten, John C</creatorcontrib><creatorcontrib>Jiskoot, Lize C</creatorcontrib><creatorcontrib>Seelaar, Harro</creatorcontrib><creatorcontrib>Borroni, Barbara</creatorcontrib><creatorcontrib>Galimberti, Daniela</creatorcontrib><creatorcontrib>Sanchez-Valle, Raquel</creatorcontrib><creatorcontrib>Laforce, Robert</creatorcontrib><creatorcontrib>Moreno, Fermin</creatorcontrib><creatorcontrib>Synofzik, Matthis</creatorcontrib><creatorcontrib>Graff, Caroline</creatorcontrib><creatorcontrib>Masellis, Mario</creatorcontrib><creatorcontrib>Tartaglia, Maria Carmela</creatorcontrib><creatorcontrib>Rowe, James B</creatorcontrib><creatorcontrib>Vandenberghe, Rik</creatorcontrib><creatorcontrib>Finger, Elizabeth</creatorcontrib><creatorcontrib>Tagliavini, Fabrizio</creatorcontrib><creatorcontrib>de Mendonça, Alexandre</creatorcontrib><creatorcontrib>Santana, Isabel</creatorcontrib><creatorcontrib>Butler, Chris R</creatorcontrib><creatorcontrib>Ducharme, Simon</creatorcontrib><creatorcontrib>Gerhard, Alexander</creatorcontrib><creatorcontrib>Danek, Adrian</creatorcontrib><creatorcontrib>Levin, Johannes</creatorcontrib><creatorcontrib>Otto, Markus</creatorcontrib><creatorcontrib>Sorbi, Sandro</creatorcontrib><creatorcontrib>Le Ber, Isabelle</creatorcontrib><creatorcontrib>Pasquier, Florence</creatorcontrib><creatorcontrib>Rohrer, Jonathan D</creatorcontrib><creatorcontrib>Genetic Frontotemporal dementia Initiative (GENFI)</creatorcontrib><title>Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort</title><title>Brain communications</title><addtitle>Brain Commun</addtitle><description>Abstract
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as ‘normal’ or ‘abnormal’ based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the ‘normal’ and ‘abnormal’ groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.
Bocchetta et al. quantified brain anomalies on MRI in a large cohort of C9orf72, MAPT, and GRN mutation carriers. They defined the imaging markers associated with the largest clinical and behavioral changes over one year in presymptomatic carriers, providing important data to inform participants’ stratification in trials.
Graphical Abstract
Graphical abstract</description><subject>Life Sciences</subject><subject>Neurons and Cognition</subject><subject>Original</subject><issn>2632-1297</issn><issn>2632-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkstu3CAUhq2qVRMleYEuKpbtws0BbGx3U0VRLiNNGqmXNWIwzFAZcAGPlOfpixZ3JpdWXWR10OH7f_4jTlG8wfABQ0dPV0EYJ7218VRL0QPDL4pDwigpMemal0_OB8VJjD8AgNRVTbv2dXFAWdcAVOyw-PU1hUmmKYgB3XxZoDGo3sgUkRyMMzJ3x-DXQcVovEPGzUC8s2PyViQj0Vo5NVcdvEs-KTv62apXVrlkxEekjeuNW8eZsChtFLq6-PxHcvl_CVo4k0syW4Wk3_iQjotXWgxRnezrUfH98uLb-XW5vL1anJ8tS1ljmkoGjGKsdd2AqNsaqqoROg_MQGshOyVWpCUktxju6lbXpIV-pYmoMdG4B0qPik8733FaWdXLHCcH42MwVoQ77oXhf984s-Frv-UYgDLSzQ7vdw6bf3TXZ0s-96DKURtGtziz7_avBf9zUjFxa6JUwyCc8lPkpOlwAw0mbUbJDpXBxxiUfvDGwOdt4I_bwPfbkEVvn07zILn_-wyUO8BP43MMfwP_w8kw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Bocchetta, Martina</creator><creator>Todd, Emily G</creator><creator>Bouzigues, Arabella</creator><creator>Cash, David M</creator><creator>Nicholas, Jennifer M</creator><creator>Convery, Rhian S</creator><creator>Russell, Lucy L</creator><creator>Thomas, David L</creator><creator>Malone, Ian B</creator><creator>Iglesias, Juan Eugenio</creator><creator>van Swieten, John C</creator><creator>Jiskoot, Lize C</creator><creator>Seelaar, Harro</creator><creator>Borroni, Barbara</creator><creator>Galimberti, Daniela</creator><creator>Sanchez-Valle, Raquel</creator><creator>Laforce, Robert</creator><creator>Moreno, Fermin</creator><creator>Synofzik, Matthis</creator><creator>Graff, Caroline</creator><creator>Masellis, Mario</creator><creator>Tartaglia, Maria Carmela</creator><creator>Rowe, James B</creator><creator>Vandenberghe, Rik</creator><creator>Finger, Elizabeth</creator><creator>Tagliavini, Fabrizio</creator><creator>de Mendonça, Alexandre</creator><creator>Santana, Isabel</creator><creator>Butler, Chris R</creator><creator>Ducharme, Simon</creator><creator>Gerhard, Alexander</creator><creator>Danek, Adrian</creator><creator>Levin, Johannes</creator><creator>Otto, Markus</creator><creator>Sorbi, Sandro</creator><creator>Le Ber, Isabelle</creator><creator>Pasquier, Florence</creator><creator>Rohrer, Jonathan D</creator><general>Oxford University Press</general><general>Oxford University Press on behalf of the Guarantors of Brain</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8857-5383</orcidid><orcidid>https://orcid.org/0000-0001-7750-896X</orcidid><orcidid>https://orcid.org/0000-0001-7833-616X</orcidid><orcidid>https://orcid.org/0000-0003-1551-5691</orcidid><orcidid>https://orcid.org/0000-0001-7512-7856</orcidid><orcidid>https://orcid.org/0000-0003-1989-7527</orcidid><orcidid>https://orcid.org/0000-0002-9949-2951</orcidid><orcidid>https://orcid.org/0000-0001-9880-9788</orcidid><orcidid>https://orcid.org/0000-0002-2280-7273</orcidid><orcidid>https://orcid.org/0000-0002-7309-1113</orcidid><orcidid>https://orcid.org/0000-0002-8071-6062</orcidid><orcidid>https://orcid.org/0000-0003-1814-5024</orcidid><orcidid>https://orcid.org/0000-0001-6237-2502</orcidid><orcidid>https://orcid.org/0000-0002-1120-1858</orcidid><orcidid>https://orcid.org/0000-0001-9340-9814</orcidid><orcidid>https://orcid.org/0000-0002-0941-3990</orcidid><orcidid>https://orcid.org/0000-0002-6630-394X</orcidid></search><sort><creationdate>2023</creationdate><title>Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort</title><author>Bocchetta, Martina ; Todd, Emily G ; Bouzigues, Arabella ; Cash, David M ; Nicholas, Jennifer M ; Convery, Rhian S ; Russell, Lucy L ; Thomas, David L ; Malone, Ian B ; Iglesias, Juan Eugenio ; van Swieten, John C ; Jiskoot, Lize C ; Seelaar, Harro ; Borroni, Barbara ; Galimberti, Daniela ; Sanchez-Valle, Raquel ; Laforce, Robert ; Moreno, Fermin ; Synofzik, Matthis ; Graff, Caroline ; Masellis, Mario ; Tartaglia, Maria Carmela ; Rowe, James B ; Vandenberghe, Rik ; Finger, Elizabeth ; Tagliavini, Fabrizio ; de Mendonça, Alexandre ; Santana, Isabel ; Butler, Chris R ; Ducharme, Simon ; Gerhard, Alexander ; Danek, Adrian ; Levin, Johannes ; Otto, Markus ; Sorbi, Sandro ; Le Ber, Isabelle ; Pasquier, Florence ; Rohrer, Jonathan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Life Sciences</topic><topic>Neurons and Cognition</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bocchetta, Martina</creatorcontrib><creatorcontrib>Todd, Emily G</creatorcontrib><creatorcontrib>Bouzigues, Arabella</creatorcontrib><creatorcontrib>Cash, David M</creatorcontrib><creatorcontrib>Nicholas, Jennifer M</creatorcontrib><creatorcontrib>Convery, Rhian S</creatorcontrib><creatorcontrib>Russell, Lucy L</creatorcontrib><creatorcontrib>Thomas, David L</creatorcontrib><creatorcontrib>Malone, Ian B</creatorcontrib><creatorcontrib>Iglesias, Juan Eugenio</creatorcontrib><creatorcontrib>van Swieten, John C</creatorcontrib><creatorcontrib>Jiskoot, Lize C</creatorcontrib><creatorcontrib>Seelaar, Harro</creatorcontrib><creatorcontrib>Borroni, Barbara</creatorcontrib><creatorcontrib>Galimberti, Daniela</creatorcontrib><creatorcontrib>Sanchez-Valle, Raquel</creatorcontrib><creatorcontrib>Laforce, Robert</creatorcontrib><creatorcontrib>Moreno, Fermin</creatorcontrib><creatorcontrib>Synofzik, Matthis</creatorcontrib><creatorcontrib>Graff, Caroline</creatorcontrib><creatorcontrib>Masellis, Mario</creatorcontrib><creatorcontrib>Tartaglia, Maria Carmela</creatorcontrib><creatorcontrib>Rowe, James B</creatorcontrib><creatorcontrib>Vandenberghe, Rik</creatorcontrib><creatorcontrib>Finger, Elizabeth</creatorcontrib><creatorcontrib>Tagliavini, Fabrizio</creatorcontrib><creatorcontrib>de Mendonça, Alexandre</creatorcontrib><creatorcontrib>Santana, Isabel</creatorcontrib><creatorcontrib>Butler, Chris R</creatorcontrib><creatorcontrib>Ducharme, Simon</creatorcontrib><creatorcontrib>Gerhard, Alexander</creatorcontrib><creatorcontrib>Danek, Adrian</creatorcontrib><creatorcontrib>Levin, Johannes</creatorcontrib><creatorcontrib>Otto, Markus</creatorcontrib><creatorcontrib>Sorbi, Sandro</creatorcontrib><creatorcontrib>Le Ber, Isabelle</creatorcontrib><creatorcontrib>Pasquier, Florence</creatorcontrib><creatorcontrib>Rohrer, Jonathan D</creatorcontrib><creatorcontrib>Genetic Frontotemporal dementia Initiative (GENFI)</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bocchetta, Martina</au><au>Todd, Emily G</au><au>Bouzigues, Arabella</au><au>Cash, David M</au><au>Nicholas, Jennifer M</au><au>Convery, Rhian S</au><au>Russell, Lucy L</au><au>Thomas, David L</au><au>Malone, Ian B</au><au>Iglesias, Juan Eugenio</au><au>van Swieten, John C</au><au>Jiskoot, Lize C</au><au>Seelaar, Harro</au><au>Borroni, Barbara</au><au>Galimberti, Daniela</au><au>Sanchez-Valle, Raquel</au><au>Laforce, Robert</au><au>Moreno, Fermin</au><au>Synofzik, Matthis</au><au>Graff, Caroline</au><au>Masellis, Mario</au><au>Tartaglia, Maria Carmela</au><au>Rowe, James B</au><au>Vandenberghe, Rik</au><au>Finger, Elizabeth</au><au>Tagliavini, Fabrizio</au><au>de Mendonça, Alexandre</au><au>Santana, Isabel</au><au>Butler, Chris R</au><au>Ducharme, Simon</au><au>Gerhard, Alexander</au><au>Danek, Adrian</au><au>Levin, Johannes</au><au>Otto, Markus</au><au>Sorbi, Sandro</au><au>Le Ber, Isabelle</au><au>Pasquier, Florence</au><au>Rohrer, Jonathan D</au><aucorp>Genetic Frontotemporal dementia Initiative (GENFI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort</atitle><jtitle>Brain communications</jtitle><addtitle>Brain Commun</addtitle><date>2023</date><risdate>2023</risdate><volume>5</volume><issue>2</issue><spage>fcad061</spage><pages>fcad061-</pages><issn>2632-1297</issn><eissn>2632-1297</eissn><abstract>Abstract
Biomarkers that can predict disease progression in individuals with genetic frontotemporal dementia are urgently needed. We aimed to identify whether baseline MRI-based grey and white matter abnormalities are associated with different clinical progression profiles in presymptomatic mutation carriers in the GENetic Frontotemporal dementia Initiative. Three hundred eighty-seven mutation carriers were included (160 GRN, 160 C9orf72, 67 MAPT), together with 240 non-carrier cognitively normal controls. Cortical and subcortical grey matter volumes were generated using automated parcellation methods on volumetric 3T T1-weighted MRI scans, while white matter characteristics were estimated using diffusion tensor imaging. Mutation carriers were divided into two disease stages based on their global CDR®+NACC-FTLD score: presymptomatic (0 or 0.5) and fully symptomatic (1 or greater). The w-scores in each grey matter volumes and white matter diffusion measures were computed to quantify the degree of abnormality compared to controls for each presymptomatic carrier, adjusting for their age, sex, total intracranial volume, and scanner type. Presymptomatic carriers were classified as ‘normal’ or ‘abnormal’ based on whether their grey matter volume and white matter diffusion measure w-scores were above or below the cut point corresponding to the 10th percentile of the controls. We then compared the change in disease severity between baseline and one year later in both the ‘normal’ and ‘abnormal’ groups within each genetic subtype, as measured by the CDR®+NACC-FTLD sum-of-boxes score and revised Cambridge Behavioural Inventory total score. Overall, presymptomatic carriers with normal regional w-scores at baseline did not progress clinically as much as those with abnormal regional w-scores. Having abnormal grey or white matter measures at baseline was associated with a statistically significant increase in the CDR®+NACC-FTLD of up to 4 points in C9orf72 expansion carriers, and 5 points in the GRN group as well as a statistically significant increase in the revised Cambridge Behavioural Inventory of up to 11 points in MAPT, 10 points in GRN, and 8 points in C9orf72 mutation carriers. Baseline regional brain abnormalities on MRI in presymptomatic mutation carriers are associated with different profiles of clinical progression over time. These results may be helpful to inform stratification of participants in future trials.
Bocchetta et al. quantified brain anomalies on MRI in a large cohort of C9orf72, MAPT, and GRN mutation carriers. They defined the imaging markers associated with the largest clinical and behavioral changes over one year in presymptomatic carriers, providing important data to inform participants’ stratification in trials.
Graphical Abstract
Graphical abstract</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>36970046</pmid><doi>10.1093/braincomms/fcad061</doi><orcidid>https://orcid.org/0000-0001-8857-5383</orcidid><orcidid>https://orcid.org/0000-0001-7750-896X</orcidid><orcidid>https://orcid.org/0000-0001-7833-616X</orcidid><orcidid>https://orcid.org/0000-0003-1551-5691</orcidid><orcidid>https://orcid.org/0000-0001-7512-7856</orcidid><orcidid>https://orcid.org/0000-0003-1989-7527</orcidid><orcidid>https://orcid.org/0000-0002-9949-2951</orcidid><orcidid>https://orcid.org/0000-0001-9880-9788</orcidid><orcidid>https://orcid.org/0000-0002-2280-7273</orcidid><orcidid>https://orcid.org/0000-0002-7309-1113</orcidid><orcidid>https://orcid.org/0000-0002-8071-6062</orcidid><orcidid>https://orcid.org/0000-0003-1814-5024</orcidid><orcidid>https://orcid.org/0000-0001-6237-2502</orcidid><orcidid>https://orcid.org/0000-0002-1120-1858</orcidid><orcidid>https://orcid.org/0000-0001-9340-9814</orcidid><orcidid>https://orcid.org/0000-0002-0941-3990</orcidid><orcidid>https://orcid.org/0000-0002-6630-394X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-1297 |
ispartof | Brain communications, 2023, Vol.5 (2), p.fcad061 |
issn | 2632-1297 2632-1297 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10036293 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Life Sciences Neurons and Cognition Original |
title | Structural MRI predicts clinical progression in presymptomatic genetic frontotemporal dementia: findings from the GENetic Frontotemporal dementia Initiative cohort |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20MRI%20predicts%20clinical%20progression%20in%20presymptomatic%20genetic%20frontotemporal%20dementia:%20findings%20from%20the%20GENetic%20Frontotemporal%20dementia%20Initiative%20cohort&rft.jtitle=Brain%20communications&rft.au=Bocchetta,%20Martina&rft.aucorp=Genetic%20Frontotemporal%20dementia%20Initiative%20(GENFI)&rft.date=2023&rft.volume=5&rft.issue=2&rft.spage=fcad061&rft.pages=fcad061-&rft.issn=2632-1297&rft.eissn=2632-1297&rft_id=info:doi/10.1093/braincomms/fcad061&rft_dat=%3Cproquest_pubme%3E2791707128%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c513t-606311ff570a5850447af53960ffac9eab2822af561958f5280dbf2a512f1d033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791707128&rft_id=info:pmid/36970046&rft_oup_id=10.1093/braincomms/fcad061&rfr_iscdi=true |