Loading…
Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood
Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to se...
Saved in:
Published in: | Nano letters 2023-03, Vol.23 (6), p.2065-2073 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13 |
---|---|
cites | cdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13 |
container_end_page | 2073 |
container_issue | 6 |
container_start_page | 2065 |
container_title | Nano letters |
container_volume | 23 |
creator | Safir, Fareeha Vu, Nhat Tadesse, Loza F. Firouzi, Kamyar Banaei, Niaz Jeffrey, Stefanie S. Saleh, Amr. A. E. Khuri-Yakub, Butrus (Pierre) T. Dionne, Jennifer A. |
description | Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios |
doi_str_mv | 10.1021/acs.nanolett.2c03015 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781214118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</originalsourceid><addsrcrecordid>eNp9kV1v2yAYhdG0qu26_oNp4nI3zl7AduyrKon6EalSpa27RhhDTGWDC7hV--tLlDRab3oFgnMeXs5B6AeBGQFKfgsZZlZY16sYZ1QCA1J8QaekYJCVdU2_HvZVfoK-hfAAADUr4BidsLIqyhLgFL2u3NAYa-wGL6SbQjQSL40bvbFxe_hsYocX62wRgglRtfiPGITFf0clo3dBuvEFa-fxjdl02X3n3bTpxinidasSQBsponEWO42XQkbljcDG4mXvXPsdHWnRB3W-X8_Qv6vL-9VNdnt3vV4tbjORFxAzTajULVG6AVnKUoPQjEnGtNS61U2lRU0pLSjLyzlTihJW1Q3TuWpyKKqWsDN0seOOUzOoVqbBvOh5-uIg_At3wvCPN9Z0fOOeOAFgc0bqRPi1J3j3OKkQ-WCCVH0vrEqZcTqvCCU5IVWS5jupTOkEr_ThHQJ82xtPvfH33vi-t2T7-f-MB9N7UUkAO8HW_uAmb1NknzPfACJoq88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781214118</pqid></control><display><type>article</type><title>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Safir, Fareeha ; Vu, Nhat ; Tadesse, Loza F. ; Firouzi, Kamyar ; Banaei, Niaz ; Jeffrey, Stefanie S. ; Saleh, Amr. A. E. ; Khuri-Yakub, Butrus (Pierre) T. ; Dionne, Jennifer A.</creator><creatorcontrib>Safir, Fareeha ; Vu, Nhat ; Tadesse, Loza F. ; Firouzi, Kamyar ; Banaei, Niaz ; Jeffrey, Stefanie S. ; Saleh, Amr. A. E. ; Khuri-Yakub, Butrus (Pierre) T. ; Dionne, Jennifer A.</creatorcontrib><description>Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c03015</identifier><identifier>PMID: 36856600</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Bioprinting ; Escherichia coli ; Gold - chemistry ; Letter ; Metal Nanoparticles - chemistry ; Spectrum Analysis, Raman - methods ; Staphylococcus epidermidis</subject><ispartof>Nano letters, 2023-03, Vol.23 (6), p.2065-2073</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</citedby><cites>FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</cites><orcidid>0000-0001-5287-4357 ; 0000-0001-7136-3683 ; 0000-0002-8035-5615 ; 0000-0003-4478-2764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36856600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Safir, Fareeha</creatorcontrib><creatorcontrib>Vu, Nhat</creatorcontrib><creatorcontrib>Tadesse, Loza F.</creatorcontrib><creatorcontrib>Firouzi, Kamyar</creatorcontrib><creatorcontrib>Banaei, Niaz</creatorcontrib><creatorcontrib>Jeffrey, Stefanie S.</creatorcontrib><creatorcontrib>Saleh, Amr. A. E.</creatorcontrib><creatorcontrib>Khuri-Yakub, Butrus (Pierre) T.</creatorcontrib><creatorcontrib>Dionne, Jennifer A.</creatorcontrib><title>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.</description><subject>Artificial Intelligence</subject><subject>Bioprinting</subject><subject>Escherichia coli</subject><subject>Gold - chemistry</subject><subject>Letter</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Staphylococcus epidermidis</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV1v2yAYhdG0qu26_oNp4nI3zl7AduyrKon6EalSpa27RhhDTGWDC7hV--tLlDRab3oFgnMeXs5B6AeBGQFKfgsZZlZY16sYZ1QCA1J8QaekYJCVdU2_HvZVfoK-hfAAADUr4BidsLIqyhLgFL2u3NAYa-wGL6SbQjQSL40bvbFxe_hsYocX62wRgglRtfiPGITFf0clo3dBuvEFa-fxjdl02X3n3bTpxinidasSQBsponEWO42XQkbljcDG4mXvXPsdHWnRB3W-X8_Qv6vL-9VNdnt3vV4tbjORFxAzTajULVG6AVnKUoPQjEnGtNS61U2lRU0pLSjLyzlTihJW1Q3TuWpyKKqWsDN0seOOUzOoVqbBvOh5-uIg_At3wvCPN9Z0fOOeOAFgc0bqRPi1J3j3OKkQ-WCCVH0vrEqZcTqvCCU5IVWS5jupTOkEr_ThHQJ82xtPvfH33vi-t2T7-f-MB9N7UUkAO8HW_uAmb1NknzPfACJoq88</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Safir, Fareeha</creator><creator>Vu, Nhat</creator><creator>Tadesse, Loza F.</creator><creator>Firouzi, Kamyar</creator><creator>Banaei, Niaz</creator><creator>Jeffrey, Stefanie S.</creator><creator>Saleh, Amr. A. E.</creator><creator>Khuri-Yakub, Butrus (Pierre) T.</creator><creator>Dionne, Jennifer A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5287-4357</orcidid><orcidid>https://orcid.org/0000-0001-7136-3683</orcidid><orcidid>https://orcid.org/0000-0002-8035-5615</orcidid><orcidid>https://orcid.org/0000-0003-4478-2764</orcidid></search><sort><creationdate>20230322</creationdate><title>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</title><author>Safir, Fareeha ; Vu, Nhat ; Tadesse, Loza F. ; Firouzi, Kamyar ; Banaei, Niaz ; Jeffrey, Stefanie S. ; Saleh, Amr. A. E. ; Khuri-Yakub, Butrus (Pierre) T. ; Dionne, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bioprinting</topic><topic>Escherichia coli</topic><topic>Gold - chemistry</topic><topic>Letter</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Staphylococcus epidermidis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safir, Fareeha</creatorcontrib><creatorcontrib>Vu, Nhat</creatorcontrib><creatorcontrib>Tadesse, Loza F.</creatorcontrib><creatorcontrib>Firouzi, Kamyar</creatorcontrib><creatorcontrib>Banaei, Niaz</creatorcontrib><creatorcontrib>Jeffrey, Stefanie S.</creatorcontrib><creatorcontrib>Saleh, Amr. A. E.</creatorcontrib><creatorcontrib>Khuri-Yakub, Butrus (Pierre) T.</creatorcontrib><creatorcontrib>Dionne, Jennifer A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safir, Fareeha</au><au>Vu, Nhat</au><au>Tadesse, Loza F.</au><au>Firouzi, Kamyar</au><au>Banaei, Niaz</au><au>Jeffrey, Stefanie S.</au><au>Saleh, Amr. A. E.</au><au>Khuri-Yakub, Butrus (Pierre) T.</au><au>Dionne, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-03-22</date><risdate>2023</risdate><volume>23</volume><issue>6</issue><spage>2065</spage><epage>2073</epage><pages>2065-2073</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36856600</pmid><doi>10.1021/acs.nanolett.2c03015</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5287-4357</orcidid><orcidid>https://orcid.org/0000-0001-7136-3683</orcidid><orcidid>https://orcid.org/0000-0002-8035-5615</orcidid><orcidid>https://orcid.org/0000-0003-4478-2764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2023-03, Vol.23 (6), p.2065-2073 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037319 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Artificial Intelligence Bioprinting Escherichia coli Gold - chemistry Letter Metal Nanoparticles - chemistry Spectrum Analysis, Raman - methods Staphylococcus epidermidis |
title | Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Acoustic%20Bioprinting%20with%20AI-Assisted%20Raman%20Spectroscopy%20for%20High-Throughput%20Identification%20of%20Bacteria%20in%20Blood&rft.jtitle=Nano%20letters&rft.au=Safir,%20Fareeha&rft.date=2023-03-22&rft.volume=23&rft.issue=6&rft.spage=2065&rft.epage=2073&rft.pages=2065-2073&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c03015&rft_dat=%3Cproquest_pubme%3E2781214118%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781214118&rft_id=info:pmid/36856600&rfr_iscdi=true |