Loading…

Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood

Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to se...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2023-03, Vol.23 (6), p.2065-2073
Main Authors: Safir, Fareeha, Vu, Nhat, Tadesse, Loza F., Firouzi, Kamyar, Banaei, Niaz, Jeffrey, Stefanie S., Saleh, Amr. A. E., Khuri-Yakub, Butrus (Pierre) T., Dionne, Jennifer A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13
cites cdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13
container_end_page 2073
container_issue 6
container_start_page 2065
container_title Nano letters
container_volume 23
creator Safir, Fareeha
Vu, Nhat
Tadesse, Loza F.
Firouzi, Kamyar
Banaei, Niaz
Jeffrey, Stefanie S.
Saleh, Amr. A. E.
Khuri-Yakub, Butrus (Pierre) T.
Dionne, Jennifer A.
description Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios
doi_str_mv 10.1021/acs.nanolett.2c03015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781214118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</originalsourceid><addsrcrecordid>eNp9kV1v2yAYhdG0qu26_oNp4nI3zl7AduyrKon6EalSpa27RhhDTGWDC7hV--tLlDRab3oFgnMeXs5B6AeBGQFKfgsZZlZY16sYZ1QCA1J8QaekYJCVdU2_HvZVfoK-hfAAADUr4BidsLIqyhLgFL2u3NAYa-wGL6SbQjQSL40bvbFxe_hsYocX62wRgglRtfiPGITFf0clo3dBuvEFa-fxjdl02X3n3bTpxinidasSQBsponEWO42XQkbljcDG4mXvXPsdHWnRB3W-X8_Qv6vL-9VNdnt3vV4tbjORFxAzTajULVG6AVnKUoPQjEnGtNS61U2lRU0pLSjLyzlTihJW1Q3TuWpyKKqWsDN0seOOUzOoVqbBvOh5-uIg_At3wvCPN9Z0fOOeOAFgc0bqRPi1J3j3OKkQ-WCCVH0vrEqZcTqvCCU5IVWS5jupTOkEr_ThHQJ82xtPvfH33vi-t2T7-f-MB9N7UUkAO8HW_uAmb1NknzPfACJoq88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781214118</pqid></control><display><type>article</type><title>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Safir, Fareeha ; Vu, Nhat ; Tadesse, Loza F. ; Firouzi, Kamyar ; Banaei, Niaz ; Jeffrey, Stefanie S. ; Saleh, Amr. A. E. ; Khuri-Yakub, Butrus (Pierre) T. ; Dionne, Jennifer A.</creator><creatorcontrib>Safir, Fareeha ; Vu, Nhat ; Tadesse, Loza F. ; Firouzi, Kamyar ; Banaei, Niaz ; Jeffrey, Stefanie S. ; Saleh, Amr. A. E. ; Khuri-Yakub, Butrus (Pierre) T. ; Dionne, Jennifer A.</creatorcontrib><description>Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios &lt;1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c03015</identifier><identifier>PMID: 36856600</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial Intelligence ; Bioprinting ; Escherichia coli ; Gold - chemistry ; Letter ; Metal Nanoparticles - chemistry ; Spectrum Analysis, Raman - methods ; Staphylococcus epidermidis</subject><ispartof>Nano letters, 2023-03, Vol.23 (6), p.2065-2073</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</citedby><cites>FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</cites><orcidid>0000-0001-5287-4357 ; 0000-0001-7136-3683 ; 0000-0002-8035-5615 ; 0000-0003-4478-2764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36856600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Safir, Fareeha</creatorcontrib><creatorcontrib>Vu, Nhat</creatorcontrib><creatorcontrib>Tadesse, Loza F.</creatorcontrib><creatorcontrib>Firouzi, Kamyar</creatorcontrib><creatorcontrib>Banaei, Niaz</creatorcontrib><creatorcontrib>Jeffrey, Stefanie S.</creatorcontrib><creatorcontrib>Saleh, Amr. A. E.</creatorcontrib><creatorcontrib>Khuri-Yakub, Butrus (Pierre) T.</creatorcontrib><creatorcontrib>Dionne, Jennifer A.</creatorcontrib><title>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios &lt;1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.</description><subject>Artificial Intelligence</subject><subject>Bioprinting</subject><subject>Escherichia coli</subject><subject>Gold - chemistry</subject><subject>Letter</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Staphylococcus epidermidis</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kV1v2yAYhdG0qu26_oNp4nI3zl7AduyrKon6EalSpa27RhhDTGWDC7hV--tLlDRab3oFgnMeXs5B6AeBGQFKfgsZZlZY16sYZ1QCA1J8QaekYJCVdU2_HvZVfoK-hfAAADUr4BidsLIqyhLgFL2u3NAYa-wGL6SbQjQSL40bvbFxe_hsYocX62wRgglRtfiPGITFf0clo3dBuvEFa-fxjdl02X3n3bTpxinidasSQBsponEWO42XQkbljcDG4mXvXPsdHWnRB3W-X8_Qv6vL-9VNdnt3vV4tbjORFxAzTajULVG6AVnKUoPQjEnGtNS61U2lRU0pLSjLyzlTihJW1Q3TuWpyKKqWsDN0seOOUzOoVqbBvOh5-uIg_At3wvCPN9Z0fOOeOAFgc0bqRPi1J3j3OKkQ-WCCVH0vrEqZcTqvCCU5IVWS5jupTOkEr_ThHQJ82xtPvfH33vi-t2T7-f-MB9N7UUkAO8HW_uAmb1NknzPfACJoq88</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Safir, Fareeha</creator><creator>Vu, Nhat</creator><creator>Tadesse, Loza F.</creator><creator>Firouzi, Kamyar</creator><creator>Banaei, Niaz</creator><creator>Jeffrey, Stefanie S.</creator><creator>Saleh, Amr. A. E.</creator><creator>Khuri-Yakub, Butrus (Pierre) T.</creator><creator>Dionne, Jennifer A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5287-4357</orcidid><orcidid>https://orcid.org/0000-0001-7136-3683</orcidid><orcidid>https://orcid.org/0000-0002-8035-5615</orcidid><orcidid>https://orcid.org/0000-0003-4478-2764</orcidid></search><sort><creationdate>20230322</creationdate><title>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</title><author>Safir, Fareeha ; Vu, Nhat ; Tadesse, Loza F. ; Firouzi, Kamyar ; Banaei, Niaz ; Jeffrey, Stefanie S. ; Saleh, Amr. A. E. ; Khuri-Yakub, Butrus (Pierre) T. ; Dionne, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bioprinting</topic><topic>Escherichia coli</topic><topic>Gold - chemistry</topic><topic>Letter</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Staphylococcus epidermidis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Safir, Fareeha</creatorcontrib><creatorcontrib>Vu, Nhat</creatorcontrib><creatorcontrib>Tadesse, Loza F.</creatorcontrib><creatorcontrib>Firouzi, Kamyar</creatorcontrib><creatorcontrib>Banaei, Niaz</creatorcontrib><creatorcontrib>Jeffrey, Stefanie S.</creatorcontrib><creatorcontrib>Saleh, Amr. A. E.</creatorcontrib><creatorcontrib>Khuri-Yakub, Butrus (Pierre) T.</creatorcontrib><creatorcontrib>Dionne, Jennifer A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Safir, Fareeha</au><au>Vu, Nhat</au><au>Tadesse, Loza F.</au><au>Firouzi, Kamyar</au><au>Banaei, Niaz</au><au>Jeffrey, Stefanie S.</au><au>Saleh, Amr. A. E.</au><au>Khuri-Yakub, Butrus (Pierre) T.</au><au>Dionne, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2023-03-22</date><risdate>2023</risdate><volume>23</volume><issue>6</issue><spage>2065</spage><epage>2073</epage><pages>2065-2073</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios &lt;1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36856600</pmid><doi>10.1021/acs.nanolett.2c03015</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5287-4357</orcidid><orcidid>https://orcid.org/0000-0001-7136-3683</orcidid><orcidid>https://orcid.org/0000-0002-8035-5615</orcidid><orcidid>https://orcid.org/0000-0003-4478-2764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2023-03, Vol.23 (6), p.2065-2073
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10037319
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Artificial Intelligence
Bioprinting
Escherichia coli
Gold - chemistry
Letter
Metal Nanoparticles - chemistry
Spectrum Analysis, Raman - methods
Staphylococcus epidermidis
title Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Acoustic%20Bioprinting%20with%20AI-Assisted%20Raman%20Spectroscopy%20for%20High-Throughput%20Identification%20of%20Bacteria%20in%20Blood&rft.jtitle=Nano%20letters&rft.au=Safir,%20Fareeha&rft.date=2023-03-22&rft.volume=23&rft.issue=6&rft.spage=2065&rft.epage=2073&rft.pages=2065-2073&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c03015&rft_dat=%3Cproquest_pubme%3E2781214118%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a450t-f12cfd1efb0c6c6f0af33c33fcffdfb8fa92225234673ee21389b3f4eb4058d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2781214118&rft_id=info:pmid/36856600&rfr_iscdi=true