Loading…

QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum

Key message Novel QTLs and candidate genes for Sclerotinia-resistance were identified in B. villosa , a wild Brassica species, which represents a new genetic source for improving oilseed rape resistance to SSR. Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is one of the most destru...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2023-04, Vol.136 (4), p.86, Article 86
Main Authors: Bergmann, Thomas, Menkhaus, Jan, Ye, Wanzhi, Schemmel, Markus, Hasler, Mario, Rietz, Steffen, Leckband, Gunhild, Cai, Daguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63
cites cdi_FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63
container_end_page
container_issue 4
container_start_page 86
container_title Theoretical and applied genetics
container_volume 136
creator Bergmann, Thomas
Menkhaus, Jan
Ye, Wanzhi
Schemmel, Markus
Hasler, Mario
Rietz, Steffen
Leckband, Gunhild
Cai, Daguang
description Key message Novel QTLs and candidate genes for Sclerotinia-resistance were identified in B. villosa , a wild Brassica species, which represents a new genetic source for improving oilseed rape resistance to SSR. Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is one of the most destructive diseases in oilseed rape growing regions. To date, there is no effective genetic resistance against S. sclerotiorum in the B. napus germplasm and knowledge of the molecular plant–fungal interaction is also limited. To identify new resistance resources, we screened a set of wild Brassica species and identified B. villosa (BRA1896) with a high level of Sclerotinia-resistance. Two segregating F 2 populations for Sclerotinia-resistance, generated by interspecific crosses between the resistant B. villosa (BRA1896) and the wild susceptible B. oleracea (BRA1909) were assessed for Sclerotinia-resistance. Genetic mapping using a 15-k Illumina Infinium SNP-array resulted in a high-density genetic map containing 1,118 SNP markers and spanning a total genetic length of 792.2 cM. QTL analysis revealed seven QTLs explaining 3.8% to 16.5% of phenotypic variance. Intriguingly, RNAseq-based transcriptome analysis identified genes and pathways specific to B. villosa, of which a cluster of five genes encoding putative receptor-like kinases (RLKs) and two pathogenesis-related (PR) proteins are co-localized within a QTL on chromosome C07. Furthermore, transcriptomic analysis revealed enhanced ethylene (ET)-activated signaling in the resistant B. villosa, which is associated with a stronger plant immune response, depressed cell death, and enhanced phytoalexin biosynthesis compared to the susceptible B. oleracea. Our data demonstrates that B. villosa represents a novel and unique genetic source for improving oilseed rape resistance against SSR.
doi_str_mv 10.1007/s00122-023-04335-9
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10040396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743201639</galeid><sourcerecordid>A743201639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEokvhBTggS1zoIcX_Ym9OqFQFKq2EoOVsTRwnuErsre2s2KfhVfE2S8sihCzZ1vj3faMZT1G8JPiUYCzfRowJpSWmrMScsaqsHxULwhktKeX0cbHAmOOykhU9Kp7FeIMxphVmT4sjJmohOOWL4ueX6xUaYb22rkfgWpQCuKiDXSc_mhyBYRttRLY1Ltlui5zfmAFlVbzDdd5sC8mg3jiTOYfeB4jRakAbOww-Aup8QLcTZH2CZDcGBZMtEzidE_RgXUzoSg8m-GSdBRT3dx-m8XnxpIMhmhf787j49uHi-vxTufr88fL8bFXqSopUClxrhimhTbMUUiw5q0G3nFeMgADGWugaWnGpaUMJkZRXFV8KrSVAS3Qj2HHxbvZdT81oWp2rDTCodbAjhK3yYNXhi7PfVe83iuyazOqdw5u9Q_C3k4lJjTZqMwzgjJ-iorImTHJBcUZf_4Xe-CnkVs8UFkQsxQPVw2CUdZ3PifXOVJ3J_MuYCFZn6vQfVF6tGa32znQ2xw8EJweCzCTzI_Uwxagur74esnRmdfAxBtPdN4TgXeVSzTOo8gyquxlUO9GrP1t5L_k9dBlgMxDzk-tNeCj_P7a_AGwT6Es</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791061686</pqid></control><display><type>article</type><title>QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum</title><source>Springer Link</source><creator>Bergmann, Thomas ; Menkhaus, Jan ; Ye, Wanzhi ; Schemmel, Markus ; Hasler, Mario ; Rietz, Steffen ; Leckband, Gunhild ; Cai, Daguang</creator><creatorcontrib>Bergmann, Thomas ; Menkhaus, Jan ; Ye, Wanzhi ; Schemmel, Markus ; Hasler, Mario ; Rietz, Steffen ; Leckband, Gunhild ; Cai, Daguang</creatorcontrib><description>Key message Novel QTLs and candidate genes for Sclerotinia-resistance were identified in B. villosa , a wild Brassica species, which represents a new genetic source for improving oilseed rape resistance to SSR. Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is one of the most destructive diseases in oilseed rape growing regions. To date, there is no effective genetic resistance against S. sclerotiorum in the B. napus germplasm and knowledge of the molecular plant–fungal interaction is also limited. To identify new resistance resources, we screened a set of wild Brassica species and identified B. villosa (BRA1896) with a high level of Sclerotinia-resistance. Two segregating F 2 populations for Sclerotinia-resistance, generated by interspecific crosses between the resistant B. villosa (BRA1896) and the wild susceptible B. oleracea (BRA1909) were assessed for Sclerotinia-resistance. Genetic mapping using a 15-k Illumina Infinium SNP-array resulted in a high-density genetic map containing 1,118 SNP markers and spanning a total genetic length of 792.2 cM. QTL analysis revealed seven QTLs explaining 3.8% to 16.5% of phenotypic variance. Intriguingly, RNAseq-based transcriptome analysis identified genes and pathways specific to B. villosa, of which a cluster of five genes encoding putative receptor-like kinases (RLKs) and two pathogenesis-related (PR) proteins are co-localized within a QTL on chromosome C07. Furthermore, transcriptomic analysis revealed enhanced ethylene (ET)-activated signaling in the resistant B. villosa, which is associated with a stronger plant immune response, depressed cell death, and enhanced phytoalexin biosynthesis compared to the susceptible B. oleracea. Our data demonstrates that B. villosa represents a novel and unique genetic source for improving oilseed rape resistance against SSR.</description><identifier>ISSN: 0040-5752</identifier><identifier>ISSN: 1432-2242</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-023-04335-9</identifier><identifier>PMID: 36966424</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Ascomycota - physiology ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Brassica ; Brassica - genetics ; Brassica napus - genetics ; Brassica napus - microbiology ; Cell death ; Chromosome Mapping ; Chromosomes ; Control ; Cruciferae ; Diseases and pests ; Fungal diseases of plants ; Gene Expression Profiling ; Gene mapping ; Genetic aspects ; Germplasm ; Immune response ; Life Sciences ; Methods ; Oilseeds ; Original ; Original Article ; Phenotypic variations ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Plant immunity ; Plant immunology ; Quantitative trait loci ; Rape plants ; RNA sequencing ; Sclerotinia sclerotiorum ; Single-nucleotide polymorphism ; Stem rot ; Transcriptomes ; Transcriptomics</subject><ispartof>Theoretical and applied genetics, 2023-04, Vol.136 (4), p.86, Article 86</ispartof><rights>The Author(s) 2023</rights><rights>2023. The Author(s).</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63</citedby><cites>FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63</cites><orcidid>0000-0002-1816-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36966424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergmann, Thomas</creatorcontrib><creatorcontrib>Menkhaus, Jan</creatorcontrib><creatorcontrib>Ye, Wanzhi</creatorcontrib><creatorcontrib>Schemmel, Markus</creatorcontrib><creatorcontrib>Hasler, Mario</creatorcontrib><creatorcontrib>Rietz, Steffen</creatorcontrib><creatorcontrib>Leckband, Gunhild</creatorcontrib><creatorcontrib>Cai, Daguang</creatorcontrib><title>QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Novel QTLs and candidate genes for Sclerotinia-resistance were identified in B. villosa , a wild Brassica species, which represents a new genetic source for improving oilseed rape resistance to SSR. Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is one of the most destructive diseases in oilseed rape growing regions. To date, there is no effective genetic resistance against S. sclerotiorum in the B. napus germplasm and knowledge of the molecular plant–fungal interaction is also limited. To identify new resistance resources, we screened a set of wild Brassica species and identified B. villosa (BRA1896) with a high level of Sclerotinia-resistance. Two segregating F 2 populations for Sclerotinia-resistance, generated by interspecific crosses between the resistant B. villosa (BRA1896) and the wild susceptible B. oleracea (BRA1909) were assessed for Sclerotinia-resistance. Genetic mapping using a 15-k Illumina Infinium SNP-array resulted in a high-density genetic map containing 1,118 SNP markers and spanning a total genetic length of 792.2 cM. QTL analysis revealed seven QTLs explaining 3.8% to 16.5% of phenotypic variance. Intriguingly, RNAseq-based transcriptome analysis identified genes and pathways specific to B. villosa, of which a cluster of five genes encoding putative receptor-like kinases (RLKs) and two pathogenesis-related (PR) proteins are co-localized within a QTL on chromosome C07. Furthermore, transcriptomic analysis revealed enhanced ethylene (ET)-activated signaling in the resistant B. villosa, which is associated with a stronger plant immune response, depressed cell death, and enhanced phytoalexin biosynthesis compared to the susceptible B. oleracea. Our data demonstrates that B. villosa represents a novel and unique genetic source for improving oilseed rape resistance against SSR.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Ascomycota - physiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Brassica</subject><subject>Brassica - genetics</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - microbiology</subject><subject>Cell death</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Control</subject><subject>Cruciferae</subject><subject>Diseases and pests</subject><subject>Fungal diseases of plants</subject><subject>Gene Expression Profiling</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Germplasm</subject><subject>Immune response</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Oilseeds</subject><subject>Original</subject><subject>Original Article</subject><subject>Phenotypic variations</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunity</subject><subject>Plant immunology</subject><subject>Quantitative trait loci</subject><subject>Rape plants</subject><subject>RNA sequencing</subject><subject>Sclerotinia sclerotiorum</subject><subject>Single-nucleotide polymorphism</subject><subject>Stem rot</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>0040-5752</issn><issn>1432-2242</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9ks9u1DAQxiMEokvhBTggS1zoIcX_Ym9OqFQFKq2EoOVsTRwnuErsre2s2KfhVfE2S8sihCzZ1vj3faMZT1G8JPiUYCzfRowJpSWmrMScsaqsHxULwhktKeX0cbHAmOOykhU9Kp7FeIMxphVmT4sjJmohOOWL4ueX6xUaYb22rkfgWpQCuKiDXSc_mhyBYRttRLY1Ltlui5zfmAFlVbzDdd5sC8mg3jiTOYfeB4jRakAbOww-Aup8QLcTZH2CZDcGBZMtEzidE_RgXUzoSg8m-GSdBRT3dx-m8XnxpIMhmhf787j49uHi-vxTufr88fL8bFXqSopUClxrhimhTbMUUiw5q0G3nFeMgADGWugaWnGpaUMJkZRXFV8KrSVAS3Qj2HHxbvZdT81oWp2rDTCodbAjhK3yYNXhi7PfVe83iuyazOqdw5u9Q_C3k4lJjTZqMwzgjJ-iorImTHJBcUZf_4Xe-CnkVs8UFkQsxQPVw2CUdZ3PifXOVJ3J_MuYCFZn6vQfVF6tGa32znQ2xw8EJweCzCTzI_Uwxagur74esnRmdfAxBtPdN4TgXeVSzTOo8gyquxlUO9GrP1t5L_k9dBlgMxDzk-tNeCj_P7a_AGwT6Es</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bergmann, Thomas</creator><creator>Menkhaus, Jan</creator><creator>Ye, Wanzhi</creator><creator>Schemmel, Markus</creator><creator>Hasler, Mario</creator><creator>Rietz, Steffen</creator><creator>Leckband, Gunhild</creator><creator>Cai, Daguang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1816-6389</orcidid></search><sort><creationdate>20230401</creationdate><title>QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum</title><author>Bergmann, Thomas ; Menkhaus, Jan ; Ye, Wanzhi ; Schemmel, Markus ; Hasler, Mario ; Rietz, Steffen ; Leckband, Gunhild ; Cai, Daguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Ascomycota - physiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Brassica</topic><topic>Brassica - genetics</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - microbiology</topic><topic>Cell death</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Control</topic><topic>Cruciferae</topic><topic>Diseases and pests</topic><topic>Fungal diseases of plants</topic><topic>Gene Expression Profiling</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Germplasm</topic><topic>Immune response</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Oilseeds</topic><topic>Original</topic><topic>Original Article</topic><topic>Phenotypic variations</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunity</topic><topic>Plant immunology</topic><topic>Quantitative trait loci</topic><topic>Rape plants</topic><topic>RNA sequencing</topic><topic>Sclerotinia sclerotiorum</topic><topic>Single-nucleotide polymorphism</topic><topic>Stem rot</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergmann, Thomas</creatorcontrib><creatorcontrib>Menkhaus, Jan</creatorcontrib><creatorcontrib>Ye, Wanzhi</creatorcontrib><creatorcontrib>Schemmel, Markus</creatorcontrib><creatorcontrib>Hasler, Mario</creatorcontrib><creatorcontrib>Rietz, Steffen</creatorcontrib><creatorcontrib>Leckband, Gunhild</creatorcontrib><creatorcontrib>Cai, Daguang</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergmann, Thomas</au><au>Menkhaus, Jan</au><au>Ye, Wanzhi</au><au>Schemmel, Markus</au><au>Hasler, Mario</au><au>Rietz, Steffen</au><au>Leckband, Gunhild</au><au>Cai, Daguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>136</volume><issue>4</issue><spage>86</spage><pages>86-</pages><artnum>86</artnum><issn>0040-5752</issn><issn>1432-2242</issn><eissn>1432-2242</eissn><abstract>Key message Novel QTLs and candidate genes for Sclerotinia-resistance were identified in B. villosa , a wild Brassica species, which represents a new genetic source for improving oilseed rape resistance to SSR. Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is one of the most destructive diseases in oilseed rape growing regions. To date, there is no effective genetic resistance against S. sclerotiorum in the B. napus germplasm and knowledge of the molecular plant–fungal interaction is also limited. To identify new resistance resources, we screened a set of wild Brassica species and identified B. villosa (BRA1896) with a high level of Sclerotinia-resistance. Two segregating F 2 populations for Sclerotinia-resistance, generated by interspecific crosses between the resistant B. villosa (BRA1896) and the wild susceptible B. oleracea (BRA1909) were assessed for Sclerotinia-resistance. Genetic mapping using a 15-k Illumina Infinium SNP-array resulted in a high-density genetic map containing 1,118 SNP markers and spanning a total genetic length of 792.2 cM. QTL analysis revealed seven QTLs explaining 3.8% to 16.5% of phenotypic variance. Intriguingly, RNAseq-based transcriptome analysis identified genes and pathways specific to B. villosa, of which a cluster of five genes encoding putative receptor-like kinases (RLKs) and two pathogenesis-related (PR) proteins are co-localized within a QTL on chromosome C07. Furthermore, transcriptomic analysis revealed enhanced ethylene (ET)-activated signaling in the resistant B. villosa, which is associated with a stronger plant immune response, depressed cell death, and enhanced phytoalexin biosynthesis compared to the susceptible B. oleracea. Our data demonstrates that B. villosa represents a novel and unique genetic source for improving oilseed rape resistance against SSR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36966424</pmid><doi>10.1007/s00122-023-04335-9</doi><orcidid>https://orcid.org/0000-0002-1816-6389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2023-04, Vol.136 (4), p.86, Article 86
issn 0040-5752
1432-2242
1432-2242
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10040396
source Springer Link
subjects Agricultural research
Agriculture
Ascomycota - physiology
Biochemistry
Biomedical and Life Sciences
Biotechnology
Brassica
Brassica - genetics
Brassica napus - genetics
Brassica napus - microbiology
Cell death
Chromosome Mapping
Chromosomes
Control
Cruciferae
Diseases and pests
Fungal diseases of plants
Gene Expression Profiling
Gene mapping
Genetic aspects
Germplasm
Immune response
Life Sciences
Methods
Oilseeds
Original
Original Article
Phenotypic variations
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Diseases - microbiology
Plant Genetics and Genomics
Plant immunity
Plant immunology
Quantitative trait loci
Rape plants
RNA sequencing
Sclerotinia sclerotiorum
Single-nucleotide polymorphism
Stem rot
Transcriptomes
Transcriptomics
title QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QTL%20mapping%20and%20transcriptome%20analysis%20identify%20novel%20QTLs%20and%20candidate%20genes%20in%20Brassica%20villosa%20for%20quantitative%20resistance%20against%20Sclerotinia%20sclerotiorum&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Bergmann,%20Thomas&rft.date=2023-04-01&rft.volume=136&rft.issue=4&rft.spage=86&rft.pages=86-&rft.artnum=86&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-023-04335-9&rft_dat=%3Cgale_pubme%3EA743201639%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c576t-609c30212bb86768439acd44531a6a33dafb2547c2b21172455486cc7aad1cb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791061686&rft_id=info:pmid/36966424&rft_galeid=A743201639&rfr_iscdi=true