Loading…

TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner

Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is als...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2023-02, Vol.14 (3), p.591
Main Authors: Cheng, Hao, Li, Linnan, Xue, Junqiang, Ma, Jianying, Ge, Junbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3
cites cdi_FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3
container_end_page
container_issue 3
container_start_page 591
container_title Genes
container_volume 14
creator Cheng, Hao
Li, Linnan
Xue, Junqiang
Ma, Jianying
Ge, Junbo
description Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m A regulator, METTL3 binds m A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.
doi_str_mv 10.3390/genes14030591
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10048594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743765251</galeid><sourcerecordid>A743765251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIRKu2R65oJS5ctoy_4vUJRWmhEWl7CWfLH7PB0cYb7Cwi_x5HLaWpsA8e2c-89jueqnpH4JIxBZ9WGDETDgyEIq-qUwqSNZxT8fpZfFJd5LyGMjhQAPG2OmET1UI7YafVt-XdrJ46hz0ms8Nc3-y3w-9gmnn0o0Nfz0zywbh6Htdj2tch1qa-vV4uF6y5wi1Gj3FX35oYMZ1XbzrTZ7x4XM-q71-ul7ObZnH_dT6bLhrHW7ZrvG25FB211gkl0AtHHGk7oSwWFyCBc-6tB26JAkY69BJaagG8MmjAsrPq84PudrQb9K68IJleb1PYmLTXgwn6-CSGH3o1_NKklKAViheFj48Kafg5Yt7pTcilBr2JOIxZU6koV4pLWdAPL9D1MKZY_B0oPuGKSPqPWpkedYjdUC52B1E9lZzJiaCCFOryP1SZHjfBDRG7UPaPEpqHBJeGnBN2TyYJ6EMH6KMOKPz755V5ov_-N_sDBXWpfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794649172</pqid></control><display><type>article</type><title>TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner</title><source>PubMed Central Free</source><source>ProQuest - Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Cheng, Hao ; Li, Linnan ; Xue, Junqiang ; Ma, Jianying ; Ge, Junbo</creator><creatorcontrib>Cheng, Hao ; Li, Linnan ; Xue, Junqiang ; Ma, Jianying ; Ge, Junbo</creatorcontrib><description>Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m A regulator, METTL3 binds m A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes14030591</identifier><identifier>PMID: 36980863</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Animals ; Apoptosis ; Biomarkers ; Cardiac function ; Cardiomyocytes ; Congestive heart failure ; Development and progression ; Estrogens ; Ethanol ; Extracellular matrix ; Extracellular Matrix - metabolism ; Fibrosis ; Genetic aspects ; Glycoproteins ; Health aspects ; Heart attacks ; Heart diseases ; Heart failure ; Heart Injuries - metabolism ; Heart Injuries - pathology ; Hypoxia ; Hypoxia - complications ; Hypoxia - metabolism ; Laboratory animals ; Messenger RNA ; Methyltransferases ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Mice ; mRNA stability ; Myocardial infarction ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocytes, Cardiac - metabolism ; N6-methyladenosine ; Physiology ; RNA modification ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Software ; Tenascin ; Tenascin - genetics ; Tenascin C</subject><ispartof>Genes, 2023-02, Vol.14 (3), p.591</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3</citedby><cites>FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3</cites><orcidid>0000-0003-1360-6290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2794649172/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2794649172?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36980863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Li, Linnan</creatorcontrib><creatorcontrib>Xue, Junqiang</creatorcontrib><creatorcontrib>Ma, Jianying</creatorcontrib><creatorcontrib>Ge, Junbo</creatorcontrib><title>TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m A regulator, METTL3 binds m A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.</description><subject>Acids</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomarkers</subject><subject>Cardiac function</subject><subject>Cardiomyocytes</subject><subject>Congestive heart failure</subject><subject>Development and progression</subject><subject>Estrogens</subject><subject>Ethanol</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibrosis</subject><subject>Genetic aspects</subject><subject>Glycoproteins</subject><subject>Health aspects</subject><subject>Heart attacks</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Injuries - metabolism</subject><subject>Heart Injuries - pathology</subject><subject>Hypoxia</subject><subject>Hypoxia - complications</subject><subject>Hypoxia - metabolism</subject><subject>Laboratory animals</subject><subject>Messenger RNA</subject><subject>Methyltransferases</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Mice</subject><subject>mRNA stability</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>N6-methyladenosine</subject><subject>Physiology</subject><subject>RNA modification</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Software</subject><subject>Tenascin</subject><subject>Tenascin - genetics</subject><subject>Tenascin C</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNptkk1vEzEQhlcIRKu2R65oJS5ctoy_4vUJRWmhEWl7CWfLH7PB0cYb7Cwi_x5HLaWpsA8e2c-89jueqnpH4JIxBZ9WGDETDgyEIq-qUwqSNZxT8fpZfFJd5LyGMjhQAPG2OmET1UI7YafVt-XdrJ46hz0ms8Nc3-y3w-9gmnn0o0Nfz0zywbh6Htdj2tch1qa-vV4uF6y5wi1Gj3FX35oYMZ1XbzrTZ7x4XM-q71-ul7ObZnH_dT6bLhrHW7ZrvG25FB211gkl0AtHHGk7oSwWFyCBc-6tB26JAkY69BJaagG8MmjAsrPq84PudrQb9K68IJleb1PYmLTXgwn6-CSGH3o1_NKklKAViheFj48Kafg5Yt7pTcilBr2JOIxZU6koV4pLWdAPL9D1MKZY_B0oPuGKSPqPWpkedYjdUC52B1E9lZzJiaCCFOryP1SZHjfBDRG7UPaPEpqHBJeGnBN2TyYJ6EMH6KMOKPz755V5ov_-N_sDBXWpfw</recordid><startdate>20230226</startdate><enddate>20230226</enddate><creator>Cheng, Hao</creator><creator>Li, Linnan</creator><creator>Xue, Junqiang</creator><creator>Ma, Jianying</creator><creator>Ge, Junbo</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1360-6290</orcidid></search><sort><creationdate>20230226</creationdate><title>TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner</title><author>Cheng, Hao ; Li, Linnan ; Xue, Junqiang ; Ma, Jianying ; Ge, Junbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomarkers</topic><topic>Cardiac function</topic><topic>Cardiomyocytes</topic><topic>Congestive heart failure</topic><topic>Development and progression</topic><topic>Estrogens</topic><topic>Ethanol</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibrosis</topic><topic>Genetic aspects</topic><topic>Glycoproteins</topic><topic>Health aspects</topic><topic>Heart attacks</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Injuries - metabolism</topic><topic>Heart Injuries - pathology</topic><topic>Hypoxia</topic><topic>Hypoxia - complications</topic><topic>Hypoxia - metabolism</topic><topic>Laboratory animals</topic><topic>Messenger RNA</topic><topic>Methyltransferases</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Mice</topic><topic>mRNA stability</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>N6-methyladenosine</topic><topic>Physiology</topic><topic>RNA modification</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Software</topic><topic>Tenascin</topic><topic>Tenascin - genetics</topic><topic>Tenascin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Hao</creatorcontrib><creatorcontrib>Li, Linnan</creatorcontrib><creatorcontrib>Xue, Junqiang</creatorcontrib><creatorcontrib>Ma, Jianying</creatorcontrib><creatorcontrib>Ge, Junbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Hao</au><au>Li, Linnan</au><au>Xue, Junqiang</au><au>Ma, Jianying</au><au>Ge, Junbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2023-02-26</date><risdate>2023</risdate><volume>14</volume><issue>3</issue><spage>591</spage><pages>591-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Cardiac fibrosis and cardiomyocyte apoptosis are reparative processes after myocardial infarction (MI), which results in cardiac remodeling and heart failure at last. Tenascin-C (TNC) consists of four distinct domains, which is a large multimodular glycoprotein of the extracellular matrix. It is also a key regulator of proliferation and apoptosis in cardiomyocytes. As a significant m A regulator, METTL3 binds m A sites in mRNA to control its degradation, maturation, stabilization, and translation. Whether METTL3 regulates the occurrence and development of myocardial infarction through the m A modification of TNC mRNA deserves our study. Here, we have demonstrated that overexpression of METTL3 aggravated cardiac dysfunction and cardiac fibrosis after 4 weeks after MI. Moreover, we also demonstrated that TNC resulted in cardiac fibrosis and cardiomyocyte apoptosis after MI. Mechanistically, METTL3 led to enhanced m A levels of TNC mRNA and promoted TNC mRNA stability. Then, we mutated one m A site "A" to "T", and the binding ability of METTL3 was reduced. In conclusion, METTL3 is involved in cardiac fibrosis and cardiomyocyte apoptosis by increasing m A levels of TNC mRNA and may be a promising target for the therapy of cardiac fibrosis after MI.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36980863</pmid><doi>10.3390/genes14030591</doi><orcidid>https://orcid.org/0000-0003-1360-6290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2023-02, Vol.14 (3), p.591
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10048594
source PubMed Central Free; ProQuest - Publicly Available Content Database; Coronavirus Research Database
subjects Acids
Animals
Apoptosis
Biomarkers
Cardiac function
Cardiomyocytes
Congestive heart failure
Development and progression
Estrogens
Ethanol
Extracellular matrix
Extracellular Matrix - metabolism
Fibrosis
Genetic aspects
Glycoproteins
Health aspects
Heart attacks
Heart diseases
Heart failure
Heart Injuries - metabolism
Heart Injuries - pathology
Hypoxia
Hypoxia - complications
Hypoxia - metabolism
Laboratory animals
Messenger RNA
Methyltransferases
Methyltransferases - genetics
Methyltransferases - metabolism
Mice
mRNA stability
Myocardial infarction
Myocardial Infarction - metabolism
Myocardial Infarction - pathology
Myocytes, Cardiac - metabolism
N6-methyladenosine
Physiology
RNA modification
RNA, Messenger - genetics
RNA, Messenger - metabolism
Software
Tenascin
Tenascin - genetics
Tenascin C
title TNC Accelerates Hypoxia-Induced Cardiac Injury in a METTL3-Dependent Manner
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TNC%20Accelerates%20Hypoxia-Induced%20Cardiac%20Injury%20in%20a%20METTL3-Dependent%20Manner&rft.jtitle=Genes&rft.au=Cheng,%20Hao&rft.date=2023-02-26&rft.volume=14&rft.issue=3&rft.spage=591&rft.pages=591-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes14030591&rft_dat=%3Cgale_pubme%3EA743765251%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c483t-db8475f2bbc595ed5c1c18f59be591070444dbd04b19031fed7082b00d9aea0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2794649172&rft_id=info:pmid/36980863&rft_galeid=A743765251&rfr_iscdi=true