Loading…

Biogeography and Genetic Diversity of Terrestrial Mites in the Ross Sea Region, Antarctica

Free-living terrestrial mites (Acari) have persisted through numerous glacial cycles in Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region, East Antarcti...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2023-02, Vol.14 (3), p.606
Main Authors: Collins, Gemma E, Young, Monica R, Convey, Peter, Chown, Steven L, Cary, S Craig, Adams, Byron J, Wall, Diana H, Hogg, Ian D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Free-living terrestrial mites (Acari) have persisted through numerous glacial cycles in Antarctica. Very little is known, however, of their genetic diversity and distribution, particularly within the Ross Sea region. To redress this gap, we sampled mites throughout the Ross Sea region, East Antarctica, including Victoria Land and the Queen Maud Mountains (QMM), covering a latitudinal range of 72-85 °S, as well as Lauft Island near Mt. Siple (73 °S) in West Antarctica and Macquarie Island (54 S) in the sub-Antarctic. We assessed genetic diversity using mitochondrial cytochrome oxidase subunit I gene sequences (COI-5P DNA barcode region), and also morphologically identified voucher specimens. We obtained 130 sequences representing four genera: ( = 30 sequences), ( = 46), ( = 18) and ( = 36). Tree-based analyses (maximum likelihood) revealed 13 genetic clusters, representing as many as 23 putative species indicated by barcode index numbers (BINs) from the Barcode of Life Datasystems (BOLD) database. We found evidence for geographically-isolated cryptic species, e.g., within and , as well as unique genetic groups occurring in sympatry (e.g., spp. in QMM). Collectively, these data confirm high genetic divergence as a consequence of geographic isolation over evolutionary timescales. From a conservation perspective, additional targeted sampling of understudied areas in the Ross Sea region should be prioritised, as further diversity is likely to be found in these short-range endemic mites.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes14030606