Loading…
Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide
Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membrane...
Saved in:
Published in: | International journal of molecular sciences 2023-03, Vol.24 (6), p.5080 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63 |
container_end_page | |
container_issue | 6 |
container_start_page | 5080 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Varela, Yaiza R González-Ramírez, Emilio J Iriondo, Marina N Ballesteros, Uxue Etxaniz, Asier Montes, Lidia Ruth Goñi, Félix M Alonso, Alicia |
description | Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membranes composed of egg sphingomyelin (eSM), dioleoyl phosphatidylethanolamine (DOPE), and CL, the addition of Cer enhanced the binding of LC3/GABARAP proteins to bilayers. Cer gave rise to lateral phase separation of Cer-rich rigid domains but protein binding took place mainly in the fluid continuous phase. In the present study, a biophysical analysis of bilayers composed of eSM, DOPE, CL, and/or Cer was attempted to understand the relevance of this lipid coexistence. Bilayers were studied by differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy. Upon the addition of CL and Cer, one continuous phase and two segregated ones were formed. In bilayers with egg phosphatidylcholine instead of eSM, in which the binding of LC3/GABARAP proteins hardly increased with Cer in the former study, a single segregated phase was formed. Assuming that phase separation at the nanoscale is ruled by the same principles acting at the micrometer scale, it is proposed that Cer-enriched rigid nanodomains, stabilized by eSM:Cer interactions formed within the DOPE- and CL-enriched fluid phase, result in structural defects at the rigid/fluid nanointerfaces, thus hypothetically facilitatingLC3/GABARAP protein interaction. |
doi_str_mv | 10.3390/ijms24065080 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10049649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751925801</galeid><sourcerecordid>A751925801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63</originalsourceid><addsrcrecordid>eNptks1v1DAQxSMEoqVw44wsceHAlvFnYi6ojfiStoIDnK2p42y8SuzFTirtf49XLWWLkA-2PL951hu_qnpJ4ZxzDe_8dspMgJLQwKPqlArGVgCqfnx0Pqme5bwFYJxJ_bQ64Uo3jEp1WvVrv_NdJj6QKz9HO8TQJY8juUKbIi5z3A242b8n3wfMjly6AW98TCT25NKPuHcpkzaGGX3wYUNaTJ2PY9EMBENHWpdw8p17Xj3pcczuxd1-Vv389PFH-2W1_vb5a3uxXlnRwLxCaRGRIxcdAFheN9SKmirWAOulE51kVPe1ri3wWijXcEuvpSj2mXWiV_ys-nCru1uuJ9dZF-aEo9klP2Ham4jePKwEP5hNvDEUQGgldFF4c6eQ4q_F5dlMPls3jhhcXLJhtWYSBNN1QV__g27jkkLxd6CokpJq_pfa4OiMD30sD9uDqLmoC8FkA7RQ5_-hyurc5G0Mrvfl_kHD29uG8k05J9ffm6RgDsEwx8Eo-KvjwdzDf5LAfwPoArKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791655193</pqid></control><display><type>article</type><title>Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Varela, Yaiza R ; González-Ramírez, Emilio J ; Iriondo, Marina N ; Ballesteros, Uxue ; Etxaniz, Asier ; Montes, Lidia Ruth ; Goñi, Félix M ; Alonso, Alicia</creator><creatorcontrib>Varela, Yaiza R ; González-Ramírez, Emilio J ; Iriondo, Marina N ; Ballesteros, Uxue ; Etxaniz, Asier ; Montes, Lidia Ruth ; Goñi, Félix M ; Alonso, Alicia</creatorcontrib><description>Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membranes composed of egg sphingomyelin (eSM), dioleoyl phosphatidylethanolamine (DOPE), and CL, the addition of Cer enhanced the binding of LC3/GABARAP proteins to bilayers. Cer gave rise to lateral phase separation of Cer-rich rigid domains but protein binding took place mainly in the fluid continuous phase. In the present study, a biophysical analysis of bilayers composed of eSM, DOPE, CL, and/or Cer was attempted to understand the relevance of this lipid coexistence. Bilayers were studied by differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy. Upon the addition of CL and Cer, one continuous phase and two segregated ones were formed. In bilayers with egg phosphatidylcholine instead of eSM, in which the binding of LC3/GABARAP proteins hardly increased with Cer in the former study, a single segregated phase was formed. Assuming that phase separation at the nanoscale is ruled by the same principles acting at the micrometer scale, it is proposed that Cer-enriched rigid nanodomains, stabilized by eSM:Cer interactions formed within the DOPE- and CL-enriched fluid phase, result in structural defects at the rigid/fluid nanointerfaces, thus hypothetically facilitatingLC3/GABARAP protein interaction.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24065080</identifier><identifier>PMID: 36982156</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Atomic force microscopy ; Autophagy ; Binding ; Cardiolipin ; Cardiolipins ; Ceramide ; Ceramides - chemistry ; Coexistence ; Differential scanning calorimetry ; Dioleoyl phosphatidylethanolamine ; Eggs ; Fluorescence microscopy ; GABARAP protein ; Geometry ; Humans ; Lecithin ; Lipid Bilayers - chemistry ; Lipids ; Macroautophagy ; Membrane lipids ; Membranes ; Microscopy ; Mitochondria ; Phase separation ; Phase transitions ; Phosphatidylcholine ; Phosphatidylethanolamine ; Protein binding ; Proteins ; Spectrum analysis ; Sphingomyelin ; Sphingomyelins - chemistry</subject><ispartof>International journal of molecular sciences, 2023-03, Vol.24 (6), p.5080</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63</citedby><cites>FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63</cites><orcidid>0000-0002-4766-8417 ; 0000-0002-2839-7420 ; 0000-0002-3816-0865 ; 0000-0001-8166-6485 ; 0000-0003-2916-8256 ; 0000-0002-2730-7470 ; 0000-0001-6270-9216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791655193/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791655193?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36982156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varela, Yaiza R</creatorcontrib><creatorcontrib>González-Ramírez, Emilio J</creatorcontrib><creatorcontrib>Iriondo, Marina N</creatorcontrib><creatorcontrib>Ballesteros, Uxue</creatorcontrib><creatorcontrib>Etxaniz, Asier</creatorcontrib><creatorcontrib>Montes, Lidia Ruth</creatorcontrib><creatorcontrib>Goñi, Félix M</creatorcontrib><creatorcontrib>Alonso, Alicia</creatorcontrib><title>Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membranes composed of egg sphingomyelin (eSM), dioleoyl phosphatidylethanolamine (DOPE), and CL, the addition of Cer enhanced the binding of LC3/GABARAP proteins to bilayers. Cer gave rise to lateral phase separation of Cer-rich rigid domains but protein binding took place mainly in the fluid continuous phase. In the present study, a biophysical analysis of bilayers composed of eSM, DOPE, CL, and/or Cer was attempted to understand the relevance of this lipid coexistence. Bilayers were studied by differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy. Upon the addition of CL and Cer, one continuous phase and two segregated ones were formed. In bilayers with egg phosphatidylcholine instead of eSM, in which the binding of LC3/GABARAP proteins hardly increased with Cer in the former study, a single segregated phase was formed. Assuming that phase separation at the nanoscale is ruled by the same principles acting at the micrometer scale, it is proposed that Cer-enriched rigid nanodomains, stabilized by eSM:Cer interactions formed within the DOPE- and CL-enriched fluid phase, result in structural defects at the rigid/fluid nanointerfaces, thus hypothetically facilitatingLC3/GABARAP protein interaction.</description><subject>Analysis</subject><subject>Atomic force microscopy</subject><subject>Autophagy</subject><subject>Binding</subject><subject>Cardiolipin</subject><subject>Cardiolipins</subject><subject>Ceramide</subject><subject>Ceramides - chemistry</subject><subject>Coexistence</subject><subject>Differential scanning calorimetry</subject><subject>Dioleoyl phosphatidylethanolamine</subject><subject>Eggs</subject><subject>Fluorescence microscopy</subject><subject>GABARAP protein</subject><subject>Geometry</subject><subject>Humans</subject><subject>Lecithin</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Macroautophagy</subject><subject>Membrane lipids</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Phase separation</subject><subject>Phase transitions</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylethanolamine</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Spectrum analysis</subject><subject>Sphingomyelin</subject><subject>Sphingomyelins - chemistry</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptks1v1DAQxSMEoqVw44wsceHAlvFnYi6ojfiStoIDnK2p42y8SuzFTirtf49XLWWLkA-2PL951hu_qnpJ4ZxzDe_8dspMgJLQwKPqlArGVgCqfnx0Pqme5bwFYJxJ_bQ64Uo3jEp1WvVrv_NdJj6QKz9HO8TQJY8juUKbIi5z3A242b8n3wfMjly6AW98TCT25NKPuHcpkzaGGX3wYUNaTJ2PY9EMBENHWpdw8p17Xj3pcczuxd1-Vv389PFH-2W1_vb5a3uxXlnRwLxCaRGRIxcdAFheN9SKmirWAOulE51kVPe1ri3wWijXcEuvpSj2mXWiV_ys-nCru1uuJ9dZF-aEo9klP2Ham4jePKwEP5hNvDEUQGgldFF4c6eQ4q_F5dlMPls3jhhcXLJhtWYSBNN1QV__g27jkkLxd6CokpJq_pfa4OiMD30sD9uDqLmoC8FkA7RQ5_-hyurc5G0Mrvfl_kHD29uG8k05J9ffm6RgDsEwx8Eo-KvjwdzDf5LAfwPoArKg</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Varela, Yaiza R</creator><creator>González-Ramírez, Emilio J</creator><creator>Iriondo, Marina N</creator><creator>Ballesteros, Uxue</creator><creator>Etxaniz, Asier</creator><creator>Montes, Lidia Ruth</creator><creator>Goñi, Félix M</creator><creator>Alonso, Alicia</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4766-8417</orcidid><orcidid>https://orcid.org/0000-0002-2839-7420</orcidid><orcidid>https://orcid.org/0000-0002-3816-0865</orcidid><orcidid>https://orcid.org/0000-0001-8166-6485</orcidid><orcidid>https://orcid.org/0000-0003-2916-8256</orcidid><orcidid>https://orcid.org/0000-0002-2730-7470</orcidid><orcidid>https://orcid.org/0000-0001-6270-9216</orcidid></search><sort><creationdate>20230307</creationdate><title>Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide</title><author>Varela, Yaiza R ; González-Ramírez, Emilio J ; Iriondo, Marina N ; Ballesteros, Uxue ; Etxaniz, Asier ; Montes, Lidia Ruth ; Goñi, Félix M ; Alonso, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Atomic force microscopy</topic><topic>Autophagy</topic><topic>Binding</topic><topic>Cardiolipin</topic><topic>Cardiolipins</topic><topic>Ceramide</topic><topic>Ceramides - chemistry</topic><topic>Coexistence</topic><topic>Differential scanning calorimetry</topic><topic>Dioleoyl phosphatidylethanolamine</topic><topic>Eggs</topic><topic>Fluorescence microscopy</topic><topic>GABARAP protein</topic><topic>Geometry</topic><topic>Humans</topic><topic>Lecithin</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Macroautophagy</topic><topic>Membrane lipids</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Phase separation</topic><topic>Phase transitions</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylethanolamine</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Spectrum analysis</topic><topic>Sphingomyelin</topic><topic>Sphingomyelins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varela, Yaiza R</creatorcontrib><creatorcontrib>González-Ramírez, Emilio J</creatorcontrib><creatorcontrib>Iriondo, Marina N</creatorcontrib><creatorcontrib>Ballesteros, Uxue</creatorcontrib><creatorcontrib>Etxaniz, Asier</creatorcontrib><creatorcontrib>Montes, Lidia Ruth</creatorcontrib><creatorcontrib>Goñi, Félix M</creatorcontrib><creatorcontrib>Alonso, Alicia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varela, Yaiza R</au><au>González-Ramírez, Emilio J</au><au>Iriondo, Marina N</au><au>Ballesteros, Uxue</au><au>Etxaniz, Asier</au><au>Montes, Lidia Ruth</au><au>Goñi, Félix M</au><au>Alonso, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-03-07</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>5080</spage><pages>5080-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al. showed that in model membranes composed of egg sphingomyelin (eSM), dioleoyl phosphatidylethanolamine (DOPE), and CL, the addition of Cer enhanced the binding of LC3/GABARAP proteins to bilayers. Cer gave rise to lateral phase separation of Cer-rich rigid domains but protein binding took place mainly in the fluid continuous phase. In the present study, a biophysical analysis of bilayers composed of eSM, DOPE, CL, and/or Cer was attempted to understand the relevance of this lipid coexistence. Bilayers were studied by differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy. Upon the addition of CL and Cer, one continuous phase and two segregated ones were formed. In bilayers with egg phosphatidylcholine instead of eSM, in which the binding of LC3/GABARAP proteins hardly increased with Cer in the former study, a single segregated phase was formed. Assuming that phase separation at the nanoscale is ruled by the same principles acting at the micrometer scale, it is proposed that Cer-enriched rigid nanodomains, stabilized by eSM:Cer interactions formed within the DOPE- and CL-enriched fluid phase, result in structural defects at the rigid/fluid nanointerfaces, thus hypothetically facilitatingLC3/GABARAP protein interaction.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36982156</pmid><doi>10.3390/ijms24065080</doi><orcidid>https://orcid.org/0000-0002-4766-8417</orcidid><orcidid>https://orcid.org/0000-0002-2839-7420</orcidid><orcidid>https://orcid.org/0000-0002-3816-0865</orcidid><orcidid>https://orcid.org/0000-0001-8166-6485</orcidid><orcidid>https://orcid.org/0000-0003-2916-8256</orcidid><orcidid>https://orcid.org/0000-0002-2730-7470</orcidid><orcidid>https://orcid.org/0000-0001-6270-9216</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-03, Vol.24 (6), p.5080 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10049649 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Atomic force microscopy Autophagy Binding Cardiolipin Cardiolipins Ceramide Ceramides - chemistry Coexistence Differential scanning calorimetry Dioleoyl phosphatidylethanolamine Eggs Fluorescence microscopy GABARAP protein Geometry Humans Lecithin Lipid Bilayers - chemistry Lipids Macroautophagy Membrane lipids Membranes Microscopy Mitochondria Phase separation Phase transitions Phosphatidylcholine Phosphatidylethanolamine Protein binding Proteins Spectrum analysis Sphingomyelin Sphingomyelins - chemistry |
title | Lipids in Mitochondrial Macroautophagy: Phase Behavior of Bilayers Containing Cardiolipin and Ceramide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipids%20in%20Mitochondrial%20Macroautophagy:%20Phase%20Behavior%20of%20Bilayers%20Containing%20Cardiolipin%20and%20Ceramide&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Varela,%20Yaiza%20R&rft.date=2023-03-07&rft.volume=24&rft.issue=6&rft.spage=5080&rft.pages=5080-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24065080&rft_dat=%3Cgale_pubme%3EA751925801%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-a5caaa3a34d000c3781c47162802f5e4d5219f797c03746e83c1b542402ce4f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791655193&rft_id=info:pmid/36982156&rft_galeid=A751925801&rfr_iscdi=true |