Loading…

Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging

Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient an...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-03, Vol.24 (6), p.5825
Main Authors: Yang, Yucun, Nan, Rui, Mi, Tongxi, Song, Yingxin, Shi, Fanghui, Liu, Xinran, Wang, Yunqi, Sun, Fengli, Xi, Yajun, Zhang, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43
cites cdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43
container_end_page
container_issue 6
container_start_page 5825
container_title International journal of molecular sciences
container_volume 24
creator Yang, Yucun
Nan, Rui
Mi, Tongxi
Song, Yingxin
Shi, Fanghui
Liu, Xinran
Wang, Yunqi
Sun, Fengli
Xi, Yajun
Zhang, Chao
description Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R , 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.
doi_str_mv 10.3390/ijms24065825
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10056805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751926902</galeid><sourcerecordid>A751926902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0Eou3CjTOyxIVDt4ztOIlPqFoKrVSBBFQcLcexE68SO9jJSvvv8WpLtSAfbI2feefjRegNgSvGBHxw2zHRAkpeU_4MnZOC0jVAWT0_eZ-hi5S2AJRRLl6iM1aKmgqAc-S-q8m1WPkWfw2-NWmOi57dzuCbnRoWNbvgcbD4V2_UjDf9EGKY-v0w4CXTEX-KYen6Gf-Yo0kJPyTnO3y7n0xMk9FzVAO-G1WXo6_QC6uGZF4_3iv08Pnm5-Z2ff_ty93m-n6tC07ndUFB07oVpTXWaqhoQVpSM8EJJ8wS1hasErqBxnLBwRTa1NxWGopGt2XdFGyFPh51p6UZTauNP3Qhp-hGFfcyKCf__fGul13YSQLAyxp4Vnj_qBDD7yWvRI4uaTMMypuwJEkrQTlQUZKMvvsP3YYl-jzfgSJlFmQH6upIdWow0nkbcmGdT2tGp4M31uX4dcWJoKXILq3Q5TFBx5BSNPapfQLy4Lo8dT3jb09HfoL_2sz-AHD6qaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791656831</pqid></control><display><type>article</type><title>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yang, Yucun ; Nan, Rui ; Mi, Tongxi ; Song, Yingxin ; Shi, Fanghui ; Liu, Xinran ; Wang, Yunqi ; Sun, Fengli ; Xi, Yajun ; Zhang, Chao</creator><creatorcontrib>Yang, Yucun ; Nan, Rui ; Mi, Tongxi ; Song, Yingxin ; Shi, Fanghui ; Liu, Xinran ; Wang, Yunqi ; Sun, Fengli ; Xi, Yajun ; Zhang, Chao</creatorcontrib><description>Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R , 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24065825</identifier><identifier>PMID: 36982900</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abiotic stress ; Chlorophyll ; Correlation analysis ; Drought ; Drought resistance ; Droughts ; Food security ; Food supply ; Genetic analysis ; Genetic diversity ; Hyperspectral Imaging ; Leaves ; Light ; Machine learning ; Nondestructive testing ; Photosynthesis ; Plant Breeding ; Plant Leaves ; Plants (botany) ; Principal components analysis ; Reflectance ; Triticum - genetics ; Water shortages ; Wheat ; Wheat industry</subject><ispartof>International journal of molecular sciences, 2023-03, Vol.24 (6), p.5825</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</citedby><cites>FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</cites><orcidid>0000-0002-3377-9466 ; 0000-0001-5287-4701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791656831/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791656831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36982900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yucun</creatorcontrib><creatorcontrib>Nan, Rui</creatorcontrib><creatorcontrib>Mi, Tongxi</creatorcontrib><creatorcontrib>Song, Yingxin</creatorcontrib><creatorcontrib>Shi, Fanghui</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>Wang, Yunqi</creatorcontrib><creatorcontrib>Sun, Fengli</creatorcontrib><creatorcontrib>Xi, Yajun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R , 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.</description><subject>Abiotic stress</subject><subject>Chlorophyll</subject><subject>Correlation analysis</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Food security</subject><subject>Food supply</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Hyperspectral Imaging</subject><subject>Leaves</subject><subject>Light</subject><subject>Machine learning</subject><subject>Nondestructive testing</subject><subject>Photosynthesis</subject><subject>Plant Breeding</subject><subject>Plant Leaves</subject><subject>Plants (botany)</subject><subject>Principal components analysis</subject><subject>Reflectance</subject><subject>Triticum - genetics</subject><subject>Water shortages</subject><subject>Wheat</subject><subject>Wheat industry</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1v1DAQhi0Eou3CjTOyxIVDt4ztOIlPqFoKrVSBBFQcLcexE68SO9jJSvvv8WpLtSAfbI2feefjRegNgSvGBHxw2zHRAkpeU_4MnZOC0jVAWT0_eZ-hi5S2AJRRLl6iM1aKmgqAc-S-q8m1WPkWfw2-NWmOi57dzuCbnRoWNbvgcbD4V2_UjDf9EGKY-v0w4CXTEX-KYen6Gf-Yo0kJPyTnO3y7n0xMk9FzVAO-G1WXo6_QC6uGZF4_3iv08Pnm5-Z2ff_ty93m-n6tC07ndUFB07oVpTXWaqhoQVpSM8EJJ8wS1hasErqBxnLBwRTa1NxWGopGt2XdFGyFPh51p6UZTauNP3Qhp-hGFfcyKCf__fGul13YSQLAyxp4Vnj_qBDD7yWvRI4uaTMMypuwJEkrQTlQUZKMvvsP3YYl-jzfgSJlFmQH6upIdWow0nkbcmGdT2tGp4M31uX4dcWJoKXILq3Q5TFBx5BSNPapfQLy4Lo8dT3jb09HfoL_2sz-AHD6qaU</recordid><startdate>20230318</startdate><enddate>20230318</enddate><creator>Yang, Yucun</creator><creator>Nan, Rui</creator><creator>Mi, Tongxi</creator><creator>Song, Yingxin</creator><creator>Shi, Fanghui</creator><creator>Liu, Xinran</creator><creator>Wang, Yunqi</creator><creator>Sun, Fengli</creator><creator>Xi, Yajun</creator><creator>Zhang, Chao</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3377-9466</orcidid><orcidid>https://orcid.org/0000-0001-5287-4701</orcidid></search><sort><creationdate>20230318</creationdate><title>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</title><author>Yang, Yucun ; Nan, Rui ; Mi, Tongxi ; Song, Yingxin ; Shi, Fanghui ; Liu, Xinran ; Wang, Yunqi ; Sun, Fengli ; Xi, Yajun ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abiotic stress</topic><topic>Chlorophyll</topic><topic>Correlation analysis</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Food security</topic><topic>Food supply</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Hyperspectral Imaging</topic><topic>Leaves</topic><topic>Light</topic><topic>Machine learning</topic><topic>Nondestructive testing</topic><topic>Photosynthesis</topic><topic>Plant Breeding</topic><topic>Plant Leaves</topic><topic>Plants (botany)</topic><topic>Principal components analysis</topic><topic>Reflectance</topic><topic>Triticum - genetics</topic><topic>Water shortages</topic><topic>Wheat</topic><topic>Wheat industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yucun</creatorcontrib><creatorcontrib>Nan, Rui</creatorcontrib><creatorcontrib>Mi, Tongxi</creatorcontrib><creatorcontrib>Song, Yingxin</creatorcontrib><creatorcontrib>Shi, Fanghui</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>Wang, Yunqi</creatorcontrib><creatorcontrib>Sun, Fengli</creatorcontrib><creatorcontrib>Xi, Yajun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yucun</au><au>Nan, Rui</au><au>Mi, Tongxi</au><au>Song, Yingxin</au><au>Shi, Fanghui</au><au>Liu, Xinran</au><au>Wang, Yunqi</au><au>Sun, Fengli</au><au>Xi, Yajun</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-03-18</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>5825</spage><pages>5825-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R , 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36982900</pmid><doi>10.3390/ijms24065825</doi><orcidid>https://orcid.org/0000-0002-3377-9466</orcidid><orcidid>https://orcid.org/0000-0001-5287-4701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-03, Vol.24 (6), p.5825
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10056805
source Publicly Available Content Database; PubMed Central
subjects Abiotic stress
Chlorophyll
Correlation analysis
Drought
Drought resistance
Droughts
Food security
Food supply
Genetic analysis
Genetic diversity
Hyperspectral Imaging
Leaves
Light
Machine learning
Nondestructive testing
Photosynthesis
Plant Breeding
Plant Leaves
Plants (botany)
Principal components analysis
Reflectance
Triticum - genetics
Water shortages
Wheat
Wheat industry
title Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20Nondestructive%20Evaluation%20of%20Wheat%20Chlorophyll%20under%20Drought%20Stress%20Using%20Hyperspectral%20Imaging&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Yang,%20Yucun&rft.date=2023-03-18&rft.volume=24&rft.issue=6&rft.spage=5825&rft.pages=5825-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24065825&rft_dat=%3Cgale_pubme%3EA751926902%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791656831&rft_id=info:pmid/36982900&rft_galeid=A751926902&rfr_iscdi=true