Loading…
Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging
Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient an...
Saved in:
Published in: | International journal of molecular sciences 2023-03, Vol.24 (6), p.5825 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43 |
container_end_page | |
container_issue | 6 |
container_start_page | 5825 |
container_title | International journal of molecular sciences |
container_volume | 24 |
creator | Yang, Yucun Nan, Rui Mi, Tongxi Song, Yingxin Shi, Fanghui Liu, Xinran Wang, Yunqi Sun, Fengli Xi, Yajun Zhang, Chao |
description | Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R
, 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops. |
doi_str_mv | 10.3390/ijms24065825 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10056805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751926902</galeid><sourcerecordid>A751926902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0Eou3CjTOyxIVDt4ztOIlPqFoKrVSBBFQcLcexE68SO9jJSvvv8WpLtSAfbI2feefjRegNgSvGBHxw2zHRAkpeU_4MnZOC0jVAWT0_eZ-hi5S2AJRRLl6iM1aKmgqAc-S-q8m1WPkWfw2-NWmOi57dzuCbnRoWNbvgcbD4V2_UjDf9EGKY-v0w4CXTEX-KYen6Gf-Yo0kJPyTnO3y7n0xMk9FzVAO-G1WXo6_QC6uGZF4_3iv08Pnm5-Z2ff_ty93m-n6tC07ndUFB07oVpTXWaqhoQVpSM8EJJ8wS1hasErqBxnLBwRTa1NxWGopGt2XdFGyFPh51p6UZTauNP3Qhp-hGFfcyKCf__fGul13YSQLAyxp4Vnj_qBDD7yWvRI4uaTMMypuwJEkrQTlQUZKMvvsP3YYl-jzfgSJlFmQH6upIdWow0nkbcmGdT2tGp4M31uX4dcWJoKXILq3Q5TFBx5BSNPapfQLy4Lo8dT3jb09HfoL_2sz-AHD6qaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791656831</pqid></control><display><type>article</type><title>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Yang, Yucun ; Nan, Rui ; Mi, Tongxi ; Song, Yingxin ; Shi, Fanghui ; Liu, Xinran ; Wang, Yunqi ; Sun, Fengli ; Xi, Yajun ; Zhang, Chao</creator><creatorcontrib>Yang, Yucun ; Nan, Rui ; Mi, Tongxi ; Song, Yingxin ; Shi, Fanghui ; Liu, Xinran ; Wang, Yunqi ; Sun, Fengli ; Xi, Yajun ; Zhang, Chao</creatorcontrib><description>Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R
, 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24065825</identifier><identifier>PMID: 36982900</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abiotic stress ; Chlorophyll ; Correlation analysis ; Drought ; Drought resistance ; Droughts ; Food security ; Food supply ; Genetic analysis ; Genetic diversity ; Hyperspectral Imaging ; Leaves ; Light ; Machine learning ; Nondestructive testing ; Photosynthesis ; Plant Breeding ; Plant Leaves ; Plants (botany) ; Principal components analysis ; Reflectance ; Triticum - genetics ; Water shortages ; Wheat ; Wheat industry</subject><ispartof>International journal of molecular sciences, 2023-03, Vol.24 (6), p.5825</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</citedby><cites>FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</cites><orcidid>0000-0002-3377-9466 ; 0000-0001-5287-4701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791656831/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791656831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36982900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yucun</creatorcontrib><creatorcontrib>Nan, Rui</creatorcontrib><creatorcontrib>Mi, Tongxi</creatorcontrib><creatorcontrib>Song, Yingxin</creatorcontrib><creatorcontrib>Shi, Fanghui</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>Wang, Yunqi</creatorcontrib><creatorcontrib>Sun, Fengli</creatorcontrib><creatorcontrib>Xi, Yajun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R
, 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.</description><subject>Abiotic stress</subject><subject>Chlorophyll</subject><subject>Correlation analysis</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Food security</subject><subject>Food supply</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Hyperspectral Imaging</subject><subject>Leaves</subject><subject>Light</subject><subject>Machine learning</subject><subject>Nondestructive testing</subject><subject>Photosynthesis</subject><subject>Plant Breeding</subject><subject>Plant Leaves</subject><subject>Plants (botany)</subject><subject>Principal components analysis</subject><subject>Reflectance</subject><subject>Triticum - genetics</subject><subject>Water shortages</subject><subject>Wheat</subject><subject>Wheat industry</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1v1DAQhi0Eou3CjTOyxIVDt4ztOIlPqFoKrVSBBFQcLcexE68SO9jJSvvv8WpLtSAfbI2feefjRegNgSvGBHxw2zHRAkpeU_4MnZOC0jVAWT0_eZ-hi5S2AJRRLl6iM1aKmgqAc-S-q8m1WPkWfw2-NWmOi57dzuCbnRoWNbvgcbD4V2_UjDf9EGKY-v0w4CXTEX-KYen6Gf-Yo0kJPyTnO3y7n0xMk9FzVAO-G1WXo6_QC6uGZF4_3iv08Pnm5-Z2ff_ty93m-n6tC07ndUFB07oVpTXWaqhoQVpSM8EJJ8wS1hasErqBxnLBwRTa1NxWGopGt2XdFGyFPh51p6UZTauNP3Qhp-hGFfcyKCf__fGul13YSQLAyxp4Vnj_qBDD7yWvRI4uaTMMypuwJEkrQTlQUZKMvvsP3YYl-jzfgSJlFmQH6upIdWow0nkbcmGdT2tGp4M31uX4dcWJoKXILq3Q5TFBx5BSNPapfQLy4Lo8dT3jb09HfoL_2sz-AHD6qaU</recordid><startdate>20230318</startdate><enddate>20230318</enddate><creator>Yang, Yucun</creator><creator>Nan, Rui</creator><creator>Mi, Tongxi</creator><creator>Song, Yingxin</creator><creator>Shi, Fanghui</creator><creator>Liu, Xinran</creator><creator>Wang, Yunqi</creator><creator>Sun, Fengli</creator><creator>Xi, Yajun</creator><creator>Zhang, Chao</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3377-9466</orcidid><orcidid>https://orcid.org/0000-0001-5287-4701</orcidid></search><sort><creationdate>20230318</creationdate><title>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</title><author>Yang, Yucun ; Nan, Rui ; Mi, Tongxi ; Song, Yingxin ; Shi, Fanghui ; Liu, Xinran ; Wang, Yunqi ; Sun, Fengli ; Xi, Yajun ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abiotic stress</topic><topic>Chlorophyll</topic><topic>Correlation analysis</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Food security</topic><topic>Food supply</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Hyperspectral Imaging</topic><topic>Leaves</topic><topic>Light</topic><topic>Machine learning</topic><topic>Nondestructive testing</topic><topic>Photosynthesis</topic><topic>Plant Breeding</topic><topic>Plant Leaves</topic><topic>Plants (botany)</topic><topic>Principal components analysis</topic><topic>Reflectance</topic><topic>Triticum - genetics</topic><topic>Water shortages</topic><topic>Wheat</topic><topic>Wheat industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yucun</creatorcontrib><creatorcontrib>Nan, Rui</creatorcontrib><creatorcontrib>Mi, Tongxi</creatorcontrib><creatorcontrib>Song, Yingxin</creatorcontrib><creatorcontrib>Shi, Fanghui</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>Wang, Yunqi</creatorcontrib><creatorcontrib>Sun, Fengli</creatorcontrib><creatorcontrib>Xi, Yajun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yucun</au><au>Nan, Rui</au><au>Mi, Tongxi</au><au>Song, Yingxin</au><au>Shi, Fanghui</au><au>Liu, Xinran</au><au>Wang, Yunqi</au><au>Sun, Fengli</au><au>Xi, Yajun</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-03-18</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>5825</spage><pages>5825-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R
, 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36982900</pmid><doi>10.3390/ijms24065825</doi><orcidid>https://orcid.org/0000-0002-3377-9466</orcidid><orcidid>https://orcid.org/0000-0001-5287-4701</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2023-03, Vol.24 (6), p.5825 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10056805 |
source | Publicly Available Content Database; PubMed Central |
subjects | Abiotic stress Chlorophyll Correlation analysis Drought Drought resistance Droughts Food security Food supply Genetic analysis Genetic diversity Hyperspectral Imaging Leaves Light Machine learning Nondestructive testing Photosynthesis Plant Breeding Plant Leaves Plants (botany) Principal components analysis Reflectance Triticum - genetics Water shortages Wheat Wheat industry |
title | Rapid and Nondestructive Evaluation of Wheat Chlorophyll under Drought Stress Using Hyperspectral Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20Nondestructive%20Evaluation%20of%20Wheat%20Chlorophyll%20under%20Drought%20Stress%20Using%20Hyperspectral%20Imaging&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Yang,%20Yucun&rft.date=2023-03-18&rft.volume=24&rft.issue=6&rft.spage=5825&rft.pages=5825-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24065825&rft_dat=%3Cgale_pubme%3EA751926902%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-420c28d96feffc07241d183951513f13d4379cb0bf5950e4ce85f7c04bcd68b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791656831&rft_id=info:pmid/36982900&rft_galeid=A751926902&rfr_iscdi=true |