Loading…

Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device

Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-03, Vol.24 (6), p.5624
Main Authors: Hudecz, Diana, McCloskey, Molly C, Vergo, Sandra, Christensen, Søren, McGrath, James L, Nielsen, Morten S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43
cites cdi_FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43
container_end_page
container_issue 6
container_start_page 5624
container_title International journal of molecular sciences
container_volume 24
creator Hudecz, Diana
McCloskey, Molly C
Vergo, Sandra
Christensen, Søren
McGrath, James L
Nielsen, Morten S
description Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combination with various techniques. Here, we present the development of a stem cell-based human in vitro blood-brain barrier model composed of induced brain microvascular endothelial cells (iBMECs) on the modular µSiM (a microdevice featuring a silicon nitride membrane) platform. The µSiM was equipped with a 100 nm thick nanoporous silicon nitride membrane with glass-like imaging quality that allowed the use of high-resolution in situ imaging to study the intracellular trafficking. As a proof-of-concept experiment, we investigated the trafficking of two monoclonal antibodies (mAb): an anti-human transferrin receptor mAb (15G11) and an anti-basigin mAb (#52) using the µSiM-iBMEC-human astrocyte model. Our results demonstrated effective endothelial uptake of the selected antibodies; however, no significant transcytosis was observed when the barrier was tight. In contrast, when the iBMECs did not form a confluent barrier on the µSiM, the antibodies accumulated inside both the iBMECs and astrocytes, demonstrating that the cells have an active endocytic and subcellular sorting machinery and that the µSiM itself does not hinder antibody transport. In conclusion, our µSiM-iBMEC-human astrocyte model provides a tight barrier with endothelial-like cells, which can be used for high-resolution in situ imaging and for studying receptor-mediated transport and transcytosis in a physiological barrier.
doi_str_mv 10.3390/ijms24065624
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10058651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751926701</galeid><sourcerecordid>A751926701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43</originalsourceid><addsrcrecordid>eNptkkFv1DAQhS1ERcvCjTOyxIUDKWMntpMT6i7QVurCAfZsOclk65UTt3ayEv8eh5Z2i5AteWR_M8_zNIS8YXCa5xV8tLs-8gKkkLx4Rk5YwXkGINXzg_iYvIxxB8BzLqoX5DiXVcllpU7Ifu1bdM4OW2roxdSbgS6d9222DMam2IRgMdCVz1aTG6eAdBP_wAPduDGY8TpRP6yzjR_oNzsG2yJdY18HM2C2NBFburZN8J2bbGsb-hn3tsFX5KgzLuLr-3NBNl-__FxdZFffzy9XZ1dZU5QwZqKETtWmLLumKqRgOTKWdtly3gGTqWtEVgsOtahZXnHO6xKYAAVKcYVFviCf7ureTHWPbYND-rPTN8H2JvzS3lj99GWw13rr95oBiHJWXJD39xWCv50wjrq3sUmWpf78FDVXFReQnJ7F3v2D7vwUhtTfTDEpSl7IR2prHGo7dD4JN3NRfaYEq7hUMMue_odKq8V-9ho7m-6fJHy4S0hexxiwe2iSgZ4HRR8OSsLfHhrzAP-djPw3DgG21A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791658246</pqid></control><display><type>article</type><title>Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Hudecz, Diana ; McCloskey, Molly C ; Vergo, Sandra ; Christensen, Søren ; McGrath, James L ; Nielsen, Morten S</creator><creatorcontrib>Hudecz, Diana ; McCloskey, Molly C ; Vergo, Sandra ; Christensen, Søren ; McGrath, James L ; Nielsen, Morten S</creatorcontrib><description>Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combination with various techniques. Here, we present the development of a stem cell-based human in vitro blood-brain barrier model composed of induced brain microvascular endothelial cells (iBMECs) on the modular µSiM (a microdevice featuring a silicon nitride membrane) platform. The µSiM was equipped with a 100 nm thick nanoporous silicon nitride membrane with glass-like imaging quality that allowed the use of high-resolution in situ imaging to study the intracellular trafficking. As a proof-of-concept experiment, we investigated the trafficking of two monoclonal antibodies (mAb): an anti-human transferrin receptor mAb (15G11) and an anti-basigin mAb (#52) using the µSiM-iBMEC-human astrocyte model. Our results demonstrated effective endothelial uptake of the selected antibodies; however, no significant transcytosis was observed when the barrier was tight. In contrast, when the iBMECs did not form a confluent barrier on the µSiM, the antibodies accumulated inside both the iBMECs and astrocytes, demonstrating that the cells have an active endocytic and subcellular sorting machinery and that the µSiM itself does not hinder antibody transport. In conclusion, our µSiM-iBMEC-human astrocyte model provides a tight barrier with endothelial-like cells, which can be used for high-resolution in situ imaging and for studying receptor-mediated transport and transcytosis in a physiological barrier.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms24065624</identifier><identifier>PMID: 36982697</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Antibodies ; Antibodies - metabolism ; Astrocytes ; Blood-brain barrier ; Blood-Brain Barrier - metabolism ; Brain - metabolism ; CD147 antigen ; Cell culture ; Coculture Techniques ; Collagen ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelium ; Fibroblasts ; High resolution ; Humans ; Kinases ; Lab-On-A-Chip Devices ; Medical imaging ; Membranes ; Microfluidic devices ; Microfluidics ; Microscopy ; Microvasculature ; Monoclonal antibodies ; Morphology ; Nervous system diseases ; Neuroimaging ; Permeability ; Pharmaceutical industry ; Physiological aspects ; Scientific equipment and supplies industry ; Silicon ; Silicon compounds ; Silicon nitride ; Stem cells ; Transferrin</subject><ispartof>International journal of molecular sciences, 2023-03, Vol.24 (6), p.5624</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43</citedby><cites>FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43</cites><orcidid>0000-0002-5237-8422 ; 0000-0002-7167-5553 ; 0000-0003-2500-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2791658246/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2791658246?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25744,27915,27916,37003,37004,44581,53782,53784,74887</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36982697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hudecz, Diana</creatorcontrib><creatorcontrib>McCloskey, Molly C</creatorcontrib><creatorcontrib>Vergo, Sandra</creatorcontrib><creatorcontrib>Christensen, Søren</creatorcontrib><creatorcontrib>McGrath, James L</creatorcontrib><creatorcontrib>Nielsen, Morten S</creatorcontrib><title>Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combination with various techniques. Here, we present the development of a stem cell-based human in vitro blood-brain barrier model composed of induced brain microvascular endothelial cells (iBMECs) on the modular µSiM (a microdevice featuring a silicon nitride membrane) platform. The µSiM was equipped with a 100 nm thick nanoporous silicon nitride membrane with glass-like imaging quality that allowed the use of high-resolution in situ imaging to study the intracellular trafficking. As a proof-of-concept experiment, we investigated the trafficking of two monoclonal antibodies (mAb): an anti-human transferrin receptor mAb (15G11) and an anti-basigin mAb (#52) using the µSiM-iBMEC-human astrocyte model. Our results demonstrated effective endothelial uptake of the selected antibodies; however, no significant transcytosis was observed when the barrier was tight. In contrast, when the iBMECs did not form a confluent barrier on the µSiM, the antibodies accumulated inside both the iBMECs and astrocytes, demonstrating that the cells have an active endocytic and subcellular sorting machinery and that the µSiM itself does not hinder antibody transport. In conclusion, our µSiM-iBMEC-human astrocyte model provides a tight barrier with endothelial-like cells, which can be used for high-resolution in situ imaging and for studying receptor-mediated transport and transcytosis in a physiological barrier.</description><subject>Antibodies</subject><subject>Antibodies - metabolism</subject><subject>Astrocytes</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain - metabolism</subject><subject>CD147 antigen</subject><subject>Cell culture</subject><subject>Coculture Techniques</subject><subject>Collagen</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelium</subject><subject>Fibroblasts</subject><subject>High resolution</subject><subject>Humans</subject><subject>Kinases</subject><subject>Lab-On-A-Chip Devices</subject><subject>Medical imaging</subject><subject>Membranes</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Microvasculature</subject><subject>Monoclonal antibodies</subject><subject>Morphology</subject><subject>Nervous system diseases</subject><subject>Neuroimaging</subject><subject>Permeability</subject><subject>Pharmaceutical industry</subject><subject>Physiological aspects</subject><subject>Scientific equipment and supplies industry</subject><subject>Silicon</subject><subject>Silicon compounds</subject><subject>Silicon nitride</subject><subject>Stem cells</subject><subject>Transferrin</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkkFv1DAQhS1ERcvCjTOyxIUDKWMntpMT6i7QVurCAfZsOclk65UTt3ayEv8eh5Z2i5AteWR_M8_zNIS8YXCa5xV8tLs-8gKkkLx4Rk5YwXkGINXzg_iYvIxxB8BzLqoX5DiXVcllpU7Ifu1bdM4OW2roxdSbgS6d9222DMam2IRgMdCVz1aTG6eAdBP_wAPduDGY8TpRP6yzjR_oNzsG2yJdY18HM2C2NBFburZN8J2bbGsb-hn3tsFX5KgzLuLr-3NBNl-__FxdZFffzy9XZ1dZU5QwZqKETtWmLLumKqRgOTKWdtly3gGTqWtEVgsOtahZXnHO6xKYAAVKcYVFviCf7ureTHWPbYND-rPTN8H2JvzS3lj99GWw13rr95oBiHJWXJD39xWCv50wjrq3sUmWpf78FDVXFReQnJ7F3v2D7vwUhtTfTDEpSl7IR2prHGo7dD4JN3NRfaYEq7hUMMue_odKq8V-9ho7m-6fJHy4S0hexxiwe2iSgZ4HRR8OSsLfHhrzAP-djPw3DgG21A</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Hudecz, Diana</creator><creator>McCloskey, Molly C</creator><creator>Vergo, Sandra</creator><creator>Christensen, Søren</creator><creator>McGrath, James L</creator><creator>Nielsen, Morten S</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5237-8422</orcidid><orcidid>https://orcid.org/0000-0002-7167-5553</orcidid><orcidid>https://orcid.org/0000-0003-2500-0085</orcidid></search><sort><creationdate>20230315</creationdate><title>Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device</title><author>Hudecz, Diana ; McCloskey, Molly C ; Vergo, Sandra ; Christensen, Søren ; McGrath, James L ; Nielsen, Morten S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies</topic><topic>Antibodies - metabolism</topic><topic>Astrocytes</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain - metabolism</topic><topic>CD147 antigen</topic><topic>Cell culture</topic><topic>Coculture Techniques</topic><topic>Collagen</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelium</topic><topic>Fibroblasts</topic><topic>High resolution</topic><topic>Humans</topic><topic>Kinases</topic><topic>Lab-On-A-Chip Devices</topic><topic>Medical imaging</topic><topic>Membranes</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Microvasculature</topic><topic>Monoclonal antibodies</topic><topic>Morphology</topic><topic>Nervous system diseases</topic><topic>Neuroimaging</topic><topic>Permeability</topic><topic>Pharmaceutical industry</topic><topic>Physiological aspects</topic><topic>Scientific equipment and supplies industry</topic><topic>Silicon</topic><topic>Silicon compounds</topic><topic>Silicon nitride</topic><topic>Stem cells</topic><topic>Transferrin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudecz, Diana</creatorcontrib><creatorcontrib>McCloskey, Molly C</creatorcontrib><creatorcontrib>Vergo, Sandra</creatorcontrib><creatorcontrib>Christensen, Søren</creatorcontrib><creatorcontrib>McGrath, James L</creatorcontrib><creatorcontrib>Nielsen, Morten S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudecz, Diana</au><au>McCloskey, Molly C</au><au>Vergo, Sandra</au><au>Christensen, Søren</au><au>McGrath, James L</au><au>Nielsen, Morten S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>5624</spage><pages>5624-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Understanding the vesicular trafficking of receptors and receptor ligands in the brain capillary endothelium is essential for the development of the next generations of biologics targeting neurodegenerative diseases. Such complex biological questions are often approached by in vitro models in combination with various techniques. Here, we present the development of a stem cell-based human in vitro blood-brain barrier model composed of induced brain microvascular endothelial cells (iBMECs) on the modular µSiM (a microdevice featuring a silicon nitride membrane) platform. The µSiM was equipped with a 100 nm thick nanoporous silicon nitride membrane with glass-like imaging quality that allowed the use of high-resolution in situ imaging to study the intracellular trafficking. As a proof-of-concept experiment, we investigated the trafficking of two monoclonal antibodies (mAb): an anti-human transferrin receptor mAb (15G11) and an anti-basigin mAb (#52) using the µSiM-iBMEC-human astrocyte model. Our results demonstrated effective endothelial uptake of the selected antibodies; however, no significant transcytosis was observed when the barrier was tight. In contrast, when the iBMECs did not form a confluent barrier on the µSiM, the antibodies accumulated inside both the iBMECs and astrocytes, demonstrating that the cells have an active endocytic and subcellular sorting machinery and that the µSiM itself does not hinder antibody transport. In conclusion, our µSiM-iBMEC-human astrocyte model provides a tight barrier with endothelial-like cells, which can be used for high-resolution in situ imaging and for studying receptor-mediated transport and transcytosis in a physiological barrier.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36982697</pmid><doi>10.3390/ijms24065624</doi><orcidid>https://orcid.org/0000-0002-5237-8422</orcidid><orcidid>https://orcid.org/0000-0002-7167-5553</orcidid><orcidid>https://orcid.org/0000-0003-2500-0085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2023-03, Vol.24 (6), p.5624
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10058651
source PubMed (Medline); Publicly Available Content Database
subjects Antibodies
Antibodies - metabolism
Astrocytes
Blood-brain barrier
Blood-Brain Barrier - metabolism
Brain - metabolism
CD147 antigen
Cell culture
Coculture Techniques
Collagen
Endothelial cells
Endothelial Cells - metabolism
Endothelium
Fibroblasts
High resolution
Humans
Kinases
Lab-On-A-Chip Devices
Medical imaging
Membranes
Microfluidic devices
Microfluidics
Microscopy
Microvasculature
Monoclonal antibodies
Morphology
Nervous system diseases
Neuroimaging
Permeability
Pharmaceutical industry
Physiological aspects
Scientific equipment and supplies industry
Silicon
Silicon compounds
Silicon nitride
Stem cells
Transferrin
title Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A02%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20a%20Human%20Blood-Brain%20Barrier%20Co-Culture%20Using%20an%20Ultrathin%20Silicon%20Nitride%20Membrane-Based%20Microfluidic%20Device&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Hudecz,%20Diana&rft.date=2023-03-15&rft.volume=24&rft.issue=6&rft.spage=5624&rft.pages=5624-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms24065624&rft_dat=%3Cgale_pubme%3EA751926701%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-580f7ba88fc946513e11e118d22f016406ee1b520b5b139222b80150707727e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791658246&rft_id=info:pmid/36982697&rft_galeid=A751926701&rfr_iscdi=true