Loading…

Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a

Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular graphics & modelling 2023-07, Vol.122, p.108487-108487, Article 108487
Main Authors: Boonamnaj, Panisak, Pandey, R.B., Sompornpisut, Pornthep
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c407t-70f1e347af9ad24aff4e79044a1fdb41521a6be58df9fbc97a7c3d38f830ebf3
container_end_page 108487
container_issue
container_start_page 108487
container_title Journal of molecular graphics & modelling
container_volume 122
creator Boonamnaj, Panisak
Pandey, R.B.
Sompornpisut, Pornthep
description Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs. [Display omitted] •The discovery of possible inhibitors of SARS-CoV-2 is extremely important.•ORF3a is a potential target for the development of treatments against COVID-19.•Exploring interactions for polyamines in ORF3a through computational techniques.•The upper tunnel of ORF3a could potentially act as a binding pocket for spermidine.
doi_str_mv 10.1016/j.jmgm.2023.108487
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10083643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1093326323000852</els_id><sourcerecordid>2805026164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-70f1e347af9ad24aff4e79044a1fdb41521a6be58df9fbc97a7c3d38f830ebf3</originalsourceid><addsrcrecordid>eNp9kd9rFDEQx4Motp7-Az7IPvqy5-THbrIgSDlaKxQKbfE1ZJPJmXM3OZO90v737rG16ItPM8x85jvDfAl5T2FNgbafduvduB3XDBifC0oo-YKcUiV5LZjgL-ccOl5z1vIT8qaUHQBwBfI1OeESVNvQ5pRcnj_sh5RD3Fb7NDyaMUSsQpwwGzuFFEtloqv6EN2C2J84lRmobs9ubutN-l6z6vrmgpu35JU3Q8F3T3FF7i7O7zaX9dX112-bs6vaCpBTLcFT5EIa3xnHhPFeoOxACEO96wVtGDVtj41yvvO97aSRljuuvOKAvecr8mWR3R_6EZ3FOGUz6H0Oo8mPOpmg_-3E8ENv072mAIq3gs8KH58Ucvp1wDLpMRSLw2AipkPRTEEDrKUzuyJsQW1OpWT0z3so6KMFeqePFuijBXqxYB768PeFzyN_fj4DnxcA5zfdB8y62IDRogsZ7aRdCv_T_w0z65hy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805026164</pqid></control><display><type>article</type><title>Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Boonamnaj, Panisak ; Pandey, R.B. ; Sompornpisut, Pornthep</creator><creatorcontrib>Boonamnaj, Panisak ; Pandey, R.B. ; Sompornpisut, Pornthep</creatorcontrib><description>Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs. [Display omitted] •The discovery of possible inhibitors of SARS-CoV-2 is extremely important.•ORF3a is a potential target for the development of treatments against COVID-19.•Exploring interactions for polyamines in ORF3a through computational techniques.•The upper tunnel of ORF3a could potentially act as a binding pocket for spermidine.</description><identifier>ISSN: 1093-3263</identifier><identifier>EISSN: 1873-4243</identifier><identifier>DOI: 10.1016/j.jmgm.2023.108487</identifier><identifier>PMID: 37086515</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>COVID-19 ; COVID-19 Drug Treatment ; Humans ; Ligands ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Open Reading Frames ; ORF3a ; Polyamines ; SAR-CoV-2 ; SARS-CoV-2 ; Spermidine</subject><ispartof>Journal of molecular graphics &amp; modelling, 2023-07, Vol.122, p.108487-108487, Article 108487</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><rights>2023 Elsevier Inc. All rights reserved. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c407t-70f1e347af9ad24aff4e79044a1fdb41521a6be58df9fbc97a7c3d38f830ebf3</cites><orcidid>0000-0002-8029-332X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37086515$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boonamnaj, Panisak</creatorcontrib><creatorcontrib>Pandey, R.B.</creatorcontrib><creatorcontrib>Sompornpisut, Pornthep</creatorcontrib><title>Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a</title><title>Journal of molecular graphics &amp; modelling</title><addtitle>J Mol Graph Model</addtitle><description>Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs. [Display omitted] •The discovery of possible inhibitors of SARS-CoV-2 is extremely important.•ORF3a is a potential target for the development of treatments against COVID-19.•Exploring interactions for polyamines in ORF3a through computational techniques.•The upper tunnel of ORF3a could potentially act as a binding pocket for spermidine.</description><subject>COVID-19</subject><subject>COVID-19 Drug Treatment</subject><subject>Humans</subject><subject>Ligands</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Open Reading Frames</subject><subject>ORF3a</subject><subject>Polyamines</subject><subject>SAR-CoV-2</subject><subject>SARS-CoV-2</subject><subject>Spermidine</subject><issn>1093-3263</issn><issn>1873-4243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kd9rFDEQx4Motp7-Az7IPvqy5-THbrIgSDlaKxQKbfE1ZJPJmXM3OZO90v737rG16ItPM8x85jvDfAl5T2FNgbafduvduB3XDBifC0oo-YKcUiV5LZjgL-ccOl5z1vIT8qaUHQBwBfI1OeESVNvQ5pRcnj_sh5RD3Fb7NDyaMUSsQpwwGzuFFEtloqv6EN2C2J84lRmobs9ubutN-l6z6vrmgpu35JU3Q8F3T3FF7i7O7zaX9dX112-bs6vaCpBTLcFT5EIa3xnHhPFeoOxACEO96wVtGDVtj41yvvO97aSRljuuvOKAvecr8mWR3R_6EZ3FOGUz6H0Oo8mPOpmg_-3E8ENv072mAIq3gs8KH58Ucvp1wDLpMRSLw2AipkPRTEEDrKUzuyJsQW1OpWT0z3so6KMFeqePFuijBXqxYB768PeFzyN_fj4DnxcA5zfdB8y62IDRogsZ7aRdCv_T_w0z65hy</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Boonamnaj, Panisak</creator><creator>Pandey, R.B.</creator><creator>Sompornpisut, Pornthep</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8029-332X</orcidid></search><sort><creationdate>20230701</creationdate><title>Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a</title><author>Boonamnaj, Panisak ; Pandey, R.B. ; Sompornpisut, Pornthep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-70f1e347af9ad24aff4e79044a1fdb41521a6be58df9fbc97a7c3d38f830ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>COVID-19</topic><topic>COVID-19 Drug Treatment</topic><topic>Humans</topic><topic>Ligands</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Open Reading Frames</topic><topic>ORF3a</topic><topic>Polyamines</topic><topic>SAR-CoV-2</topic><topic>SARS-CoV-2</topic><topic>Spermidine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boonamnaj, Panisak</creatorcontrib><creatorcontrib>Pandey, R.B.</creatorcontrib><creatorcontrib>Sompornpisut, Pornthep</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular graphics &amp; modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boonamnaj, Panisak</au><au>Pandey, R.B.</au><au>Sompornpisut, Pornthep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a</atitle><jtitle>Journal of molecular graphics &amp; modelling</jtitle><addtitle>J Mol Graph Model</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>122</volume><spage>108487</spage><epage>108487</epage><pages>108487-108487</pages><artnum>108487</artnum><issn>1093-3263</issn><eissn>1873-4243</eissn><abstract>Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs. [Display omitted] •The discovery of possible inhibitors of SARS-CoV-2 is extremely important.•ORF3a is a potential target for the development of treatments against COVID-19.•Exploring interactions for polyamines in ORF3a through computational techniques.•The upper tunnel of ORF3a could potentially act as a binding pocket for spermidine.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37086515</pmid><doi>10.1016/j.jmgm.2023.108487</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8029-332X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1093-3263
ispartof Journal of molecular graphics & modelling, 2023-07, Vol.122, p.108487-108487, Article 108487
issn 1093-3263
1873-4243
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10083643
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects COVID-19
COVID-19 Drug Treatment
Humans
Ligands
Molecular docking
Molecular Docking Simulation
Molecular dynamics
Open Reading Frames
ORF3a
Polyamines
SAR-CoV-2
SARS-CoV-2
Spermidine
title Exploring polyamine interactions and binding pockets in SARS-CoV-2 ORF3a
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20polyamine%20interactions%20and%20binding%20pockets%20in%20SARS-CoV-2%20ORF3a&rft.jtitle=Journal%20of%20molecular%20graphics%20&%20modelling&rft.au=Boonamnaj,%20Panisak&rft.date=2023-07-01&rft.volume=122&rft.spage=108487&rft.epage=108487&rft.pages=108487-108487&rft.artnum=108487&rft.issn=1093-3263&rft.eissn=1873-4243&rft_id=info:doi/10.1016/j.jmgm.2023.108487&rft_dat=%3Cproquest_pubme%3E2805026164%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-70f1e347af9ad24aff4e79044a1fdb41521a6be58df9fbc97a7c3d38f830ebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805026164&rft_id=info:pmid/37086515&rfr_iscdi=true