Loading…

Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes

Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. Wh...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2022-12, Vol.24 (12), p.6320-6335
Main Authors: Fatton, Mathilda, Filippidou, Sevasti, Junier, Thomas, Cailleau, Guillaume, Berge, Matthieu, Poppleton, Daniel, Blum, Thorsten B., Kaminek, Marek, Odriozola, Adolfo, Blom, Jochen, Johnson, Shannon L., Abrahams, Jan Pieter, Chain, Patrick S., Gribaldo, Simonetta, Tocheva, Elitza I., Zuber, Benoît, Viollier, Patrick H., Junier, Pilar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3
container_end_page 6335
container_issue 12
container_start_page 6320
container_title Environmental microbiology
container_volume 24
creator Fatton, Mathilda
Filippidou, Sevasti
Junier, Thomas
Cailleau, Guillaume
Berge, Matthieu
Poppleton, Daniel
Blum, Thorsten B.
Kaminek, Marek
Odriozola, Adolfo
Blom, Jochen
Johnson, Shannon L.
Abrahams, Jan Pieter
Chain, Patrick S.
Gribaldo, Simonetta
Tocheva, Elitza I.
Zuber, Benoît
Viollier, Patrick H.
Junier, Pilar
description Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.
doi_str_mv 10.1111/1462-2920.16145
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10086788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755408404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eoh9w7q2K4NLLtv6MnRNCq7ZUFHEpZ8vrTHbdZu3UdkD77-s0ZQVc8MWe8TPv2PMidELwOSnrgvCaLmhDS1gTLl6hw33m9f5M6AE6SukeYyKZxG_RAasFw5iSQ3S3jLshhzSEOPYmu-Ar56uvY8wbZ6o0DOdVF6KFVJkqQkn6B-fXVegqM9WENXhILk1FVy5unR0zpHfoTWf6BO9f9mP04-rybvllcfv9-mb5-XZhOW_EQnJhWiU6EHWLm1bJxoJRJaJq1VqzYsoqKVvaKSuwUgIzUrfUCs4aVneNYcfo06w7jKsttBZ8jqbXQ3RbE3c6GKf_vvFuo9fhpyYYq1oqVRQ-zAohZaeTdRnsxgbvwWZNucRckgKdvbSJ4XGElPXWJQt9bzyEMWkqhVC4zJoV9OM_6H0Yoy9DeKY4VhzzQl3MlI0hpQjd_skE68lXPTmnJxf1s6-l4vTPn-7530YWQMzAL9fD7n96-vLbzSz8BImcrLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755408404</pqid></control><display><type>article</type><title>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fatton, Mathilda ; Filippidou, Sevasti ; Junier, Thomas ; Cailleau, Guillaume ; Berge, Matthieu ; Poppleton, Daniel ; Blum, Thorsten B. ; Kaminek, Marek ; Odriozola, Adolfo ; Blom, Jochen ; Johnson, Shannon L. ; Abrahams, Jan Pieter ; Chain, Patrick S. ; Gribaldo, Simonetta ; Tocheva, Elitza I. ; Zuber, Benoît ; Viollier, Patrick H. ; Junier, Pilar</creator><creatorcontrib>Fatton, Mathilda ; Filippidou, Sevasti ; Junier, Thomas ; Cailleau, Guillaume ; Berge, Matthieu ; Poppleton, Daniel ; Blum, Thorsten B. ; Kaminek, Marek ; Odriozola, Adolfo ; Blom, Jochen ; Johnson, Shannon L. ; Abrahams, Jan Pieter ; Chain, Patrick S. ; Gribaldo, Simonetta ; Tocheva, Elitza I. ; Zuber, Benoît ; Viollier, Patrick H. ; Junier, Pilar ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16145</identifier><identifier>PMID: 36530021</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Bacilli ; Bacillus ; BASIC BIOLOGICAL SCIENCES ; Cellular structure ; Environmental conditions ; Firmicutes ; Microbiology ; Phenotypes ; Phylogeny ; Spores ; Spores, Bacterial - genetics ; Sporulation</subject><ispartof>Environmental microbiology, 2022-12, Vol.24 (12), p.6320-6335</ispartof><rights>2022 The Authors. published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3</cites><orcidid>0000-0002-8618-3340 ; 0000000286183340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36530021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470471$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatton, Mathilda</creatorcontrib><creatorcontrib>Filippidou, Sevasti</creatorcontrib><creatorcontrib>Junier, Thomas</creatorcontrib><creatorcontrib>Cailleau, Guillaume</creatorcontrib><creatorcontrib>Berge, Matthieu</creatorcontrib><creatorcontrib>Poppleton, Daniel</creatorcontrib><creatorcontrib>Blum, Thorsten B.</creatorcontrib><creatorcontrib>Kaminek, Marek</creatorcontrib><creatorcontrib>Odriozola, Adolfo</creatorcontrib><creatorcontrib>Blom, Jochen</creatorcontrib><creatorcontrib>Johnson, Shannon L.</creatorcontrib><creatorcontrib>Abrahams, Jan Pieter</creatorcontrib><creatorcontrib>Chain, Patrick S.</creatorcontrib><creatorcontrib>Gribaldo, Simonetta</creatorcontrib><creatorcontrib>Tocheva, Elitza I.</creatorcontrib><creatorcontrib>Zuber, Benoît</creatorcontrib><creatorcontrib>Viollier, Patrick H.</creatorcontrib><creatorcontrib>Junier, Pilar</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.</description><subject>Bacilli</subject><subject>Bacillus</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cellular structure</subject><subject>Environmental conditions</subject><subject>Firmicutes</subject><subject>Microbiology</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Spores</subject><subject>Spores, Bacterial - genetics</subject><subject>Sporulation</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1v1DAQhi0Eoh9w7q2K4NLLtv6MnRNCq7ZUFHEpZ8vrTHbdZu3UdkD77-s0ZQVc8MWe8TPv2PMidELwOSnrgvCaLmhDS1gTLl6hw33m9f5M6AE6SukeYyKZxG_RAasFw5iSQ3S3jLshhzSEOPYmu-Ar56uvY8wbZ6o0DOdVF6KFVJkqQkn6B-fXVegqM9WENXhILk1FVy5unR0zpHfoTWf6BO9f9mP04-rybvllcfv9-mb5-XZhOW_EQnJhWiU6EHWLm1bJxoJRJaJq1VqzYsoqKVvaKSuwUgIzUrfUCs4aVneNYcfo06w7jKsttBZ8jqbXQ3RbE3c6GKf_vvFuo9fhpyYYq1oqVRQ-zAohZaeTdRnsxgbvwWZNucRckgKdvbSJ4XGElPXWJQt9bzyEMWkqhVC4zJoV9OM_6H0Yoy9DeKY4VhzzQl3MlI0hpQjd_skE68lXPTmnJxf1s6-l4vTPn-7530YWQMzAL9fD7n96-vLbzSz8BImcrLI</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Fatton, Mathilda</creator><creator>Filippidou, Sevasti</creator><creator>Junier, Thomas</creator><creator>Cailleau, Guillaume</creator><creator>Berge, Matthieu</creator><creator>Poppleton, Daniel</creator><creator>Blum, Thorsten B.</creator><creator>Kaminek, Marek</creator><creator>Odriozola, Adolfo</creator><creator>Blom, Jochen</creator><creator>Johnson, Shannon L.</creator><creator>Abrahams, Jan Pieter</creator><creator>Chain, Patrick S.</creator><creator>Gribaldo, Simonetta</creator><creator>Tocheva, Elitza I.</creator><creator>Zuber, Benoît</creator><creator>Viollier, Patrick H.</creator><creator>Junier, Pilar</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8618-3340</orcidid><orcidid>https://orcid.org/0000000286183340</orcidid></search><sort><creationdate>202212</creationdate><title>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</title><author>Fatton, Mathilda ; Filippidou, Sevasti ; Junier, Thomas ; Cailleau, Guillaume ; Berge, Matthieu ; Poppleton, Daniel ; Blum, Thorsten B. ; Kaminek, Marek ; Odriozola, Adolfo ; Blom, Jochen ; Johnson, Shannon L. ; Abrahams, Jan Pieter ; Chain, Patrick S. ; Gribaldo, Simonetta ; Tocheva, Elitza I. ; Zuber, Benoît ; Viollier, Patrick H. ; Junier, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacilli</topic><topic>Bacillus</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cellular structure</topic><topic>Environmental conditions</topic><topic>Firmicutes</topic><topic>Microbiology</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Spores</topic><topic>Spores, Bacterial - genetics</topic><topic>Sporulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatton, Mathilda</creatorcontrib><creatorcontrib>Filippidou, Sevasti</creatorcontrib><creatorcontrib>Junier, Thomas</creatorcontrib><creatorcontrib>Cailleau, Guillaume</creatorcontrib><creatorcontrib>Berge, Matthieu</creatorcontrib><creatorcontrib>Poppleton, Daniel</creatorcontrib><creatorcontrib>Blum, Thorsten B.</creatorcontrib><creatorcontrib>Kaminek, Marek</creatorcontrib><creatorcontrib>Odriozola, Adolfo</creatorcontrib><creatorcontrib>Blom, Jochen</creatorcontrib><creatorcontrib>Johnson, Shannon L.</creatorcontrib><creatorcontrib>Abrahams, Jan Pieter</creatorcontrib><creatorcontrib>Chain, Patrick S.</creatorcontrib><creatorcontrib>Gribaldo, Simonetta</creatorcontrib><creatorcontrib>Tocheva, Elitza I.</creatorcontrib><creatorcontrib>Zuber, Benoît</creatorcontrib><creatorcontrib>Viollier, Patrick H.</creatorcontrib><creatorcontrib>Junier, Pilar</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatton, Mathilda</au><au>Filippidou, Sevasti</au><au>Junier, Thomas</au><au>Cailleau, Guillaume</au><au>Berge, Matthieu</au><au>Poppleton, Daniel</au><au>Blum, Thorsten B.</au><au>Kaminek, Marek</au><au>Odriozola, Adolfo</au><au>Blom, Jochen</au><au>Johnson, Shannon L.</au><au>Abrahams, Jan Pieter</au><au>Chain, Patrick S.</au><au>Gribaldo, Simonetta</au><au>Tocheva, Elitza I.</au><au>Zuber, Benoît</au><au>Viollier, Patrick H.</au><au>Junier, Pilar</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>6320</spage><epage>6335</epage><pages>6320-6335</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36530021</pmid><doi>10.1111/1462-2920.16145</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8618-3340</orcidid><orcidid>https://orcid.org/0000000286183340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2022-12, Vol.24 (12), p.6320-6335
issn 1462-2912
1462-2920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10086788
source Wiley-Blackwell Read & Publish Collection
subjects Bacilli
Bacillus
BASIC BIOLOGICAL SCIENCES
Cellular structure
Environmental conditions
Firmicutes
Microbiology
Phenotypes
Phylogeny
Spores
Spores, Bacterial - genetics
Sporulation
title Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryptosporulation%20in%20Kurthia%20spp.%20forces%20a%20rethinking%20of%20asporogenesis%20in%20Firmicutes&rft.jtitle=Environmental%20microbiology&rft.au=Fatton,%20Mathilda&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-12&rft.volume=24&rft.issue=12&rft.spage=6320&rft.epage=6335&rft.pages=6320-6335&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16145&rft_dat=%3Cproquest_pubme%3E2755408404%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755408404&rft_id=info:pmid/36530021&rfr_iscdi=true