Loading…
Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes
Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. Wh...
Saved in:
Published in: | Environmental microbiology 2022-12, Vol.24 (12), p.6320-6335 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3 |
container_end_page | 6335 |
container_issue | 12 |
container_start_page | 6320 |
container_title | Environmental microbiology |
container_volume | 24 |
creator | Fatton, Mathilda Filippidou, Sevasti Junier, Thomas Cailleau, Guillaume Berge, Matthieu Poppleton, Daniel Blum, Thorsten B. Kaminek, Marek Odriozola, Adolfo Blom, Jochen Johnson, Shannon L. Abrahams, Jan Pieter Chain, Patrick S. Gribaldo, Simonetta Tocheva, Elitza I. Zuber, Benoît Viollier, Patrick H. Junier, Pilar |
description | Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions. |
doi_str_mv | 10.1111/1462-2920.16145 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10086788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755408404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eoh9w7q2K4NLLtv6MnRNCq7ZUFHEpZ8vrTHbdZu3UdkD77-s0ZQVc8MWe8TPv2PMidELwOSnrgvCaLmhDS1gTLl6hw33m9f5M6AE6SukeYyKZxG_RAasFw5iSQ3S3jLshhzSEOPYmu-Ar56uvY8wbZ6o0DOdVF6KFVJkqQkn6B-fXVegqM9WENXhILk1FVy5unR0zpHfoTWf6BO9f9mP04-rybvllcfv9-mb5-XZhOW_EQnJhWiU6EHWLm1bJxoJRJaJq1VqzYsoqKVvaKSuwUgIzUrfUCs4aVneNYcfo06w7jKsttBZ8jqbXQ3RbE3c6GKf_vvFuo9fhpyYYq1oqVRQ-zAohZaeTdRnsxgbvwWZNucRckgKdvbSJ4XGElPXWJQt9bzyEMWkqhVC4zJoV9OM_6H0Yoy9DeKY4VhzzQl3MlI0hpQjd_skE68lXPTmnJxf1s6-l4vTPn-7530YWQMzAL9fD7n96-vLbzSz8BImcrLI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755408404</pqid></control><display><type>article</type><title>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fatton, Mathilda ; Filippidou, Sevasti ; Junier, Thomas ; Cailleau, Guillaume ; Berge, Matthieu ; Poppleton, Daniel ; Blum, Thorsten B. ; Kaminek, Marek ; Odriozola, Adolfo ; Blom, Jochen ; Johnson, Shannon L. ; Abrahams, Jan Pieter ; Chain, Patrick S. ; Gribaldo, Simonetta ; Tocheva, Elitza I. ; Zuber, Benoît ; Viollier, Patrick H. ; Junier, Pilar</creator><creatorcontrib>Fatton, Mathilda ; Filippidou, Sevasti ; Junier, Thomas ; Cailleau, Guillaume ; Berge, Matthieu ; Poppleton, Daniel ; Blum, Thorsten B. ; Kaminek, Marek ; Odriozola, Adolfo ; Blom, Jochen ; Johnson, Shannon L. ; Abrahams, Jan Pieter ; Chain, Patrick S. ; Gribaldo, Simonetta ; Tocheva, Elitza I. ; Zuber, Benoît ; Viollier, Patrick H. ; Junier, Pilar ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16145</identifier><identifier>PMID: 36530021</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Bacilli ; Bacillus ; BASIC BIOLOGICAL SCIENCES ; Cellular structure ; Environmental conditions ; Firmicutes ; Microbiology ; Phenotypes ; Phylogeny ; Spores ; Spores, Bacterial - genetics ; Sporulation</subject><ispartof>Environmental microbiology, 2022-12, Vol.24 (12), p.6320-6335</ispartof><rights>2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3</cites><orcidid>0000-0002-8618-3340 ; 0000000286183340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36530021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2470471$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatton, Mathilda</creatorcontrib><creatorcontrib>Filippidou, Sevasti</creatorcontrib><creatorcontrib>Junier, Thomas</creatorcontrib><creatorcontrib>Cailleau, Guillaume</creatorcontrib><creatorcontrib>Berge, Matthieu</creatorcontrib><creatorcontrib>Poppleton, Daniel</creatorcontrib><creatorcontrib>Blum, Thorsten B.</creatorcontrib><creatorcontrib>Kaminek, Marek</creatorcontrib><creatorcontrib>Odriozola, Adolfo</creatorcontrib><creatorcontrib>Blom, Jochen</creatorcontrib><creatorcontrib>Johnson, Shannon L.</creatorcontrib><creatorcontrib>Abrahams, Jan Pieter</creatorcontrib><creatorcontrib>Chain, Patrick S.</creatorcontrib><creatorcontrib>Gribaldo, Simonetta</creatorcontrib><creatorcontrib>Tocheva, Elitza I.</creatorcontrib><creatorcontrib>Zuber, Benoît</creatorcontrib><creatorcontrib>Viollier, Patrick H.</creatorcontrib><creatorcontrib>Junier, Pilar</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.</description><subject>Bacilli</subject><subject>Bacillus</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cellular structure</subject><subject>Environmental conditions</subject><subject>Firmicutes</subject><subject>Microbiology</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Spores</subject><subject>Spores, Bacterial - genetics</subject><subject>Sporulation</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1v1DAQhi0Eoh9w7q2K4NLLtv6MnRNCq7ZUFHEpZ8vrTHbdZu3UdkD77-s0ZQVc8MWe8TPv2PMidELwOSnrgvCaLmhDS1gTLl6hw33m9f5M6AE6SukeYyKZxG_RAasFw5iSQ3S3jLshhzSEOPYmu-Ar56uvY8wbZ6o0DOdVF6KFVJkqQkn6B-fXVegqM9WENXhILk1FVy5unR0zpHfoTWf6BO9f9mP04-rybvllcfv9-mb5-XZhOW_EQnJhWiU6EHWLm1bJxoJRJaJq1VqzYsoqKVvaKSuwUgIzUrfUCs4aVneNYcfo06w7jKsttBZ8jqbXQ3RbE3c6GKf_vvFuo9fhpyYYq1oqVRQ-zAohZaeTdRnsxgbvwWZNucRckgKdvbSJ4XGElPXWJQt9bzyEMWkqhVC4zJoV9OM_6H0Yoy9DeKY4VhzzQl3MlI0hpQjd_skE68lXPTmnJxf1s6-l4vTPn-7530YWQMzAL9fD7n96-vLbzSz8BImcrLI</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Fatton, Mathilda</creator><creator>Filippidou, Sevasti</creator><creator>Junier, Thomas</creator><creator>Cailleau, Guillaume</creator><creator>Berge, Matthieu</creator><creator>Poppleton, Daniel</creator><creator>Blum, Thorsten B.</creator><creator>Kaminek, Marek</creator><creator>Odriozola, Adolfo</creator><creator>Blom, Jochen</creator><creator>Johnson, Shannon L.</creator><creator>Abrahams, Jan Pieter</creator><creator>Chain, Patrick S.</creator><creator>Gribaldo, Simonetta</creator><creator>Tocheva, Elitza I.</creator><creator>Zuber, Benoît</creator><creator>Viollier, Patrick H.</creator><creator>Junier, Pilar</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8618-3340</orcidid><orcidid>https://orcid.org/0000000286183340</orcidid></search><sort><creationdate>202212</creationdate><title>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</title><author>Fatton, Mathilda ; Filippidou, Sevasti ; Junier, Thomas ; Cailleau, Guillaume ; Berge, Matthieu ; Poppleton, Daniel ; Blum, Thorsten B. ; Kaminek, Marek ; Odriozola, Adolfo ; Blom, Jochen ; Johnson, Shannon L. ; Abrahams, Jan Pieter ; Chain, Patrick S. ; Gribaldo, Simonetta ; Tocheva, Elitza I. ; Zuber, Benoît ; Viollier, Patrick H. ; Junier, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacilli</topic><topic>Bacillus</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cellular structure</topic><topic>Environmental conditions</topic><topic>Firmicutes</topic><topic>Microbiology</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Spores</topic><topic>Spores, Bacterial - genetics</topic><topic>Sporulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatton, Mathilda</creatorcontrib><creatorcontrib>Filippidou, Sevasti</creatorcontrib><creatorcontrib>Junier, Thomas</creatorcontrib><creatorcontrib>Cailleau, Guillaume</creatorcontrib><creatorcontrib>Berge, Matthieu</creatorcontrib><creatorcontrib>Poppleton, Daniel</creatorcontrib><creatorcontrib>Blum, Thorsten B.</creatorcontrib><creatorcontrib>Kaminek, Marek</creatorcontrib><creatorcontrib>Odriozola, Adolfo</creatorcontrib><creatorcontrib>Blom, Jochen</creatorcontrib><creatorcontrib>Johnson, Shannon L.</creatorcontrib><creatorcontrib>Abrahams, Jan Pieter</creatorcontrib><creatorcontrib>Chain, Patrick S.</creatorcontrib><creatorcontrib>Gribaldo, Simonetta</creatorcontrib><creatorcontrib>Tocheva, Elitza I.</creatorcontrib><creatorcontrib>Zuber, Benoît</creatorcontrib><creatorcontrib>Viollier, Patrick H.</creatorcontrib><creatorcontrib>Junier, Pilar</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatton, Mathilda</au><au>Filippidou, Sevasti</au><au>Junier, Thomas</au><au>Cailleau, Guillaume</au><au>Berge, Matthieu</au><au>Poppleton, Daniel</au><au>Blum, Thorsten B.</au><au>Kaminek, Marek</au><au>Odriozola, Adolfo</au><au>Blom, Jochen</au><au>Johnson, Shannon L.</au><au>Abrahams, Jan Pieter</au><au>Chain, Patrick S.</au><au>Gribaldo, Simonetta</au><au>Tocheva, Elitza I.</au><au>Zuber, Benoît</au><au>Viollier, Patrick H.</au><au>Junier, Pilar</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>6320</spage><epage>6335</epage><pages>6320-6335</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase‐bright spore‐like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore‐like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub‐culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36530021</pmid><doi>10.1111/1462-2920.16145</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8618-3340</orcidid><orcidid>https://orcid.org/0000000286183340</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2022-12, Vol.24 (12), p.6320-6335 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10086788 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bacilli Bacillus BASIC BIOLOGICAL SCIENCES Cellular structure Environmental conditions Firmicutes Microbiology Phenotypes Phylogeny Spores Spores, Bacterial - genetics Sporulation |
title | Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryptosporulation%20in%20Kurthia%20spp.%20forces%20a%20rethinking%20of%20asporogenesis%20in%20Firmicutes&rft.jtitle=Environmental%20microbiology&rft.au=Fatton,%20Mathilda&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2022-12&rft.volume=24&rft.issue=12&rft.spage=6320&rft.epage=6335&rft.pages=6320-6335&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16145&rft_dat=%3Cproquest_pubme%3E2755408404%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4495-745ad85fe56d09d879cea8e5628bdcab38c877d2f8c508850316d2c543936f9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2755408404&rft_id=info:pmid/36530021&rfr_iscdi=true |