Loading…
Non-intrusive speech quality assessment with attention-based ResNet-BiLSTM
Speech quality is frequently affected by a variety factors in online conferencing applications, such as background noise, reverberation, packet loss and network jitter. In real scenarios, it is impossible to obtain a clean reference signal for evaluating the quality of the conferencing speech. There...
Saved in:
Published in: | Signal, image and video processing image and video processing, 2023-10, Vol.17 (7), p.3377-3385 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Speech quality is frequently affected by a variety factors in online conferencing applications, such as background noise, reverberation, packet loss and network jitter. In real scenarios, it is impossible to obtain a clean reference signal for evaluating the quality of the conferencing speech. Therefore, an effective non-intrusive speech quality assessment (NISQA) method is necessary. In this paper, we propose a new network framework for NISQA based on ResNet and BiLSTM. ResNet is utilized to extract local features, while BiLSTM is used to integrate representative features with long-term time dependencies and sequential characteristics. Considering that ResNet may result in the loss of context information when applied to the NISQA task, we propose a variant of ResNet which can preserve the time series information of the conferencing speech. The experimental results demonstrate that the proposed method has a high correlation with the mean opinion score of clean, noisy and processed speech. |
---|---|
ISSN: | 1863-1703 1863-1711 |
DOI: | 10.1007/s11760-023-02559-2 |