Loading…

Interplay between hydrogen and chalcogen bonds in cysteine

Protein structures are stabilized by several types of chemical interactions between amino acids, which can compete with each other. This is the case of chalcogen and hydrogen bonds formed by the thiol group of cysteine, which can form three hydrogen bonds with one hydrogen acceptor and two hydrogen...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2023-03, Vol.91 (3), p.395-399
Main Author: Carugo, Oliviero
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein structures are stabilized by several types of chemical interactions between amino acids, which can compete with each other. This is the case of chalcogen and hydrogen bonds formed by the thiol group of cysteine, which can form three hydrogen bonds with one hydrogen acceptor and two hydrogen donors and a chalcogen bond with a nucleophile along the extension of the CS bond. A survey of the Protein Data Bank shows that hydrogen bonds are about 40–50 more common than chalcogen bonds, suggesting that they are stronger and, consequently, prevail, though not always. It is also observed that frequently a thiol group that forms a chalcogen bond is also involved, as a hydrogen donor, in a hydrogen bond.
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.26437