Loading…
Melt Memory Effect in Polyethylene Random Terpolymer with Small Amount of 1-Octene and 1-Hexene Co-Units: Non-Isothermal and Isothermal Investigations
Homo-polymers of reasonable molecular weight relax very fast in the molten state. Starting from a semi-crystalline structure, when the homo-polymer is heated up to a temperature higher than its nominal melting temperature, it relaxes quickly into a homogenous molten state. The following crystallizat...
Saved in:
Published in: | Polymers 2023-03, Vol.15 (7), p.1721 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Homo-polymers of reasonable molecular weight relax very fast in the molten state. Starting from a semi-crystalline structure, when the homo-polymer is heated up to a temperature higher than its nominal melting temperature, it relaxes quickly into a homogenous molten state. The following crystallization temperature during cooling remains constant irrespective of the melt temperature. However, the situation is evidently different in copolymers. A phenomenon named the crystallization melt memory effect denotes an increased crystallization rate during cooling after a polymer was melted at different temperatures, which is often observed. The melt temperature can be even higher than the equilibrium melting temperature of the corresponding polymer crystals. In this work, we investigated such memory effect in a polyethylene random terpolymer with a small fraction of 1-octene and 1-hexene co-units using differential scanning calorimetry techniques. Both non-isothermal and isothermal protocols were employed. In non-isothermal tests, a purposely prepared sample with well defined thermal history (the sample has been first conditioned at 200 °C for 5 min to eliminate the thermal history and then cooled down to -50 °C) was melted at different temperatures, followed by a continuous cooling at a constant rate of 20 °C/min. Peak crystallization temperature during cooling was taken to represent the crystallization rate. Whereas, in isothermal tests, the same prepared sample with well defined thermal history was cooled to a certain crystallization temperature after being melted at different temperatures. Here, time to complete the isothermal crystallization was recorded. It was found that the results of isothermal tests allowed us to divide the melt temperature into four zones where the features of the crystallization half time change. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15071721 |