Loading…

Endophytic yeast protect plants against metal toxicity by inhibiting plant metal uptake through an ethylene‐dependent mechanism

Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. C...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment cell and environment, 2023-01, Vol.46 (1), p.268-287
Main Authors: Domka, Agnieszka, Jędrzejczyk, Roman, Ważny, Rafał, Gustab, Maciej, Kowalski, Michał, Nosek, Michał, Bizan, Jakub, Puschenreiter, Markus, Vaculίk, Marek, Kováč, Ján, Rozpądek, Piotr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663
cites cdi_FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663
container_end_page 287
container_issue 1
container_start_page 268
container_title Plant, cell and environment
container_volume 46
creator Domka, Agnieszka
Jędrzejczyk, Roman
Ważny, Rafał
Gustab, Maciej
Kowalski, Michał
Nosek, Michał
Bizan, Jakub
Puschenreiter, Markus
Vaculίk, Marek
Kováč, Ján
Rozpądek, Piotr
description Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss‐of‐function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild‐type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down‐regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine‐tuning plant metal homeostasis. Summary statement The symbiotic basidiomycete yeast Sporobolomyces ruberrimus protected plants against excess metals through specific inhibition of Fe and Ni uptake. Downregulation of the expression of Iron Regulated Transporter 1 was necessary for metal uptake inhibition in plants inoculated with S. ruberrimus.
doi_str_mv 10.1111/pce.14473
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747912553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0Eokvh0BeoLHHikNazdpLNqUKrLSBVggOcLceZbNxm7dR22uZG34Bn5Elwm6UqB-Yyo_Gnf37rJ-QI2AmkOh00noAQJX9BFsCLPONMsJdkwUCwrCwrOCBvQrhkLC3K6jU54MVyVUDFF-R-Yxs3dFM0mk6oQqSDdxF16r2yMVC1Vcam9Q6j6ml0d0abONF6osZ2pjbR2O3M7pFxiOoKaey8G7cdVZZi7KYeLf7--avBAW2Dj7DulDVh95a8alUf8N2-H5If55vv68_ZxddPX9YfLzIthODZiuWwakTLMW-BQ6U0pBkePlQAVljWvC2bFvJaAG-1qpUAVQiutUa2LAp-SM5m3WGsd9joZMKrXg7e7JSfpFNG_vtiTSe37kYCA8bEiiWF93sF765HDFFeutHbZFouy-QDlnnOE_VhprR3IXhsn04Akw9xyRSXfIwrscfPPT2Rf_NJwOkM3Joep_8ryW_rzSz5B0-fo-8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747912553</pqid></control><display><type>article</type><title>Endophytic yeast protect plants against metal toxicity by inhibiting plant metal uptake through an ethylene‐dependent mechanism</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Domka, Agnieszka ; Jędrzejczyk, Roman ; Ważny, Rafał ; Gustab, Maciej ; Kowalski, Michał ; Nosek, Michał ; Bizan, Jakub ; Puschenreiter, Markus ; Vaculίk, Marek ; Kováč, Ján ; Rozpądek, Piotr</creator><creatorcontrib>Domka, Agnieszka ; Jędrzejczyk, Roman ; Ważny, Rafał ; Gustab, Maciej ; Kowalski, Michał ; Nosek, Michał ; Bizan, Jakub ; Puschenreiter, Markus ; Vaculίk, Marek ; Kováč, Ján ; Rozpądek, Piotr</creatorcontrib><description>Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss‐of‐function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild‐type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down‐regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine‐tuning plant metal homeostasis. Summary statement The symbiotic basidiomycete yeast Sporobolomyces ruberrimus protected plants against excess metals through specific inhibition of Fe and Ni uptake. Downregulation of the expression of Iron Regulated Transporter 1 was necessary for metal uptake inhibition in plants inoculated with S. ruberrimus.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14473</identifier><identifier>PMID: 36286193</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aquatic plants ; Cadmium ; Defective mutant ; Endophytes ; Ethylene ; Gene expression ; Genes ; growth ; heavy metals ; Homeostasis ; hormones ; Iron ; metal toxicity ; Metals ; Microorganisms ; Mutation ; Nickel ; Original ; Phenotypes ; Plant metabolism ; Protected plants ; Saccharomyces cerevisiae ; Signaling ; symbiosis ; Toxicity ; Yeasts</subject><ispartof>Plant, cell and environment, 2023-01, Vol.46 (1), p.268-287</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Plant, Cell &amp; Environment published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663</citedby><cites>FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663</cites><orcidid>0000-0002-7035-5339 ; 0000-0002-9242-2571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36286193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Domka, Agnieszka</creatorcontrib><creatorcontrib>Jędrzejczyk, Roman</creatorcontrib><creatorcontrib>Ważny, Rafał</creatorcontrib><creatorcontrib>Gustab, Maciej</creatorcontrib><creatorcontrib>Kowalski, Michał</creatorcontrib><creatorcontrib>Nosek, Michał</creatorcontrib><creatorcontrib>Bizan, Jakub</creatorcontrib><creatorcontrib>Puschenreiter, Markus</creatorcontrib><creatorcontrib>Vaculίk, Marek</creatorcontrib><creatorcontrib>Kováč, Ján</creatorcontrib><creatorcontrib>Rozpądek, Piotr</creatorcontrib><title>Endophytic yeast protect plants against metal toxicity by inhibiting plant metal uptake through an ethylene‐dependent mechanism</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss‐of‐function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild‐type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down‐regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine‐tuning plant metal homeostasis. Summary statement The symbiotic basidiomycete yeast Sporobolomyces ruberrimus protected plants against excess metals through specific inhibition of Fe and Ni uptake. Downregulation of the expression of Iron Regulated Transporter 1 was necessary for metal uptake inhibition in plants inoculated with S. ruberrimus.</description><subject>Aquatic plants</subject><subject>Cadmium</subject><subject>Defective mutant</subject><subject>Endophytes</subject><subject>Ethylene</subject><subject>Gene expression</subject><subject>Genes</subject><subject>growth</subject><subject>heavy metals</subject><subject>Homeostasis</subject><subject>hormones</subject><subject>Iron</subject><subject>metal toxicity</subject><subject>Metals</subject><subject>Microorganisms</subject><subject>Mutation</subject><subject>Nickel</subject><subject>Original</subject><subject>Phenotypes</subject><subject>Plant metabolism</subject><subject>Protected plants</subject><subject>Saccharomyces cerevisiae</subject><subject>Signaling</subject><subject>symbiosis</subject><subject>Toxicity</subject><subject>Yeasts</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kcFu1DAQhi0Eokvh0BeoLHHikNazdpLNqUKrLSBVggOcLceZbNxm7dR22uZG34Bn5Elwm6UqB-Yyo_Gnf37rJ-QI2AmkOh00noAQJX9BFsCLPONMsJdkwUCwrCwrOCBvQrhkLC3K6jU54MVyVUDFF-R-Yxs3dFM0mk6oQqSDdxF16r2yMVC1Vcam9Q6j6ml0d0abONF6osZ2pjbR2O3M7pFxiOoKaey8G7cdVZZi7KYeLf7--avBAW2Dj7DulDVh95a8alUf8N2-H5If55vv68_ZxddPX9YfLzIthODZiuWwakTLMW-BQ6U0pBkePlQAVljWvC2bFvJaAG-1qpUAVQiutUa2LAp-SM5m3WGsd9joZMKrXg7e7JSfpFNG_vtiTSe37kYCA8bEiiWF93sF765HDFFeutHbZFouy-QDlnnOE_VhprR3IXhsn04Akw9xyRSXfIwrscfPPT2Rf_NJwOkM3Joep_8ryW_rzSz5B0-fo-8</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Domka, Agnieszka</creator><creator>Jędrzejczyk, Roman</creator><creator>Ważny, Rafał</creator><creator>Gustab, Maciej</creator><creator>Kowalski, Michał</creator><creator>Nosek, Michał</creator><creator>Bizan, Jakub</creator><creator>Puschenreiter, Markus</creator><creator>Vaculίk, Marek</creator><creator>Kováč, Ján</creator><creator>Rozpądek, Piotr</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7035-5339</orcidid><orcidid>https://orcid.org/0000-0002-9242-2571</orcidid></search><sort><creationdate>202301</creationdate><title>Endophytic yeast protect plants against metal toxicity by inhibiting plant metal uptake through an ethylene‐dependent mechanism</title><author>Domka, Agnieszka ; Jędrzejczyk, Roman ; Ważny, Rafał ; Gustab, Maciej ; Kowalski, Michał ; Nosek, Michał ; Bizan, Jakub ; Puschenreiter, Markus ; Vaculίk, Marek ; Kováč, Ján ; Rozpądek, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic plants</topic><topic>Cadmium</topic><topic>Defective mutant</topic><topic>Endophytes</topic><topic>Ethylene</topic><topic>Gene expression</topic><topic>Genes</topic><topic>growth</topic><topic>heavy metals</topic><topic>Homeostasis</topic><topic>hormones</topic><topic>Iron</topic><topic>metal toxicity</topic><topic>Metals</topic><topic>Microorganisms</topic><topic>Mutation</topic><topic>Nickel</topic><topic>Original</topic><topic>Phenotypes</topic><topic>Plant metabolism</topic><topic>Protected plants</topic><topic>Saccharomyces cerevisiae</topic><topic>Signaling</topic><topic>symbiosis</topic><topic>Toxicity</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domka, Agnieszka</creatorcontrib><creatorcontrib>Jędrzejczyk, Roman</creatorcontrib><creatorcontrib>Ważny, Rafał</creatorcontrib><creatorcontrib>Gustab, Maciej</creatorcontrib><creatorcontrib>Kowalski, Michał</creatorcontrib><creatorcontrib>Nosek, Michał</creatorcontrib><creatorcontrib>Bizan, Jakub</creatorcontrib><creatorcontrib>Puschenreiter, Markus</creatorcontrib><creatorcontrib>Vaculίk, Marek</creatorcontrib><creatorcontrib>Kováč, Ján</creatorcontrib><creatorcontrib>Rozpądek, Piotr</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domka, Agnieszka</au><au>Jędrzejczyk, Roman</au><au>Ważny, Rafał</au><au>Gustab, Maciej</au><au>Kowalski, Michał</au><au>Nosek, Michał</au><au>Bizan, Jakub</au><au>Puschenreiter, Markus</au><au>Vaculίk, Marek</au><au>Kováč, Ján</au><au>Rozpądek, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endophytic yeast protect plants against metal toxicity by inhibiting plant metal uptake through an ethylene‐dependent mechanism</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2023-01</date><risdate>2023</risdate><volume>46</volume><issue>1</issue><spage>268</spage><epage>287</epage><pages>268-287</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss‐of‐function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild‐type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down‐regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine‐tuning plant metal homeostasis. Summary statement The symbiotic basidiomycete yeast Sporobolomyces ruberrimus protected plants against excess metals through specific inhibition of Fe and Ni uptake. Downregulation of the expression of Iron Regulated Transporter 1 was necessary for metal uptake inhibition in plants inoculated with S. ruberrimus.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36286193</pmid><doi>10.1111/pce.14473</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7035-5339</orcidid><orcidid>https://orcid.org/0000-0002-9242-2571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2023-01, Vol.46 (1), p.268-287
issn 0140-7791
1365-3040
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100480
source Wiley-Blackwell Read & Publish Collection
subjects Aquatic plants
Cadmium
Defective mutant
Endophytes
Ethylene
Gene expression
Genes
growth
heavy metals
Homeostasis
hormones
Iron
metal toxicity
Metals
Microorganisms
Mutation
Nickel
Original
Phenotypes
Plant metabolism
Protected plants
Saccharomyces cerevisiae
Signaling
symbiosis
Toxicity
Yeasts
title Endophytic yeast protect plants against metal toxicity by inhibiting plant metal uptake through an ethylene‐dependent mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endophytic%20yeast%20protect%20plants%20against%20metal%20toxicity%20by%20inhibiting%20plant%20metal%20uptake%20through%20an%20ethylene%E2%80%90dependent%20mechanism&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Domka,%20Agnieszka&rft.date=2023-01&rft.volume=46&rft.issue=1&rft.spage=268&rft.epage=287&rft.pages=268-287&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14473&rft_dat=%3Cproquest_pubme%3E2747912553%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4443-80518d4f3e5f1319ac1f3e1147961e9e7b3f7df15b413fcaba41a643ccce02663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2747912553&rft_id=info:pmid/36286193&rfr_iscdi=true