Loading…

Ultrafast electron localization and screening in a transition metal dichalcogenide

The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields....

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (15), p.e2221725120-e2221725120
Main Authors: Schumacher, Z, Sato, S A, Neb, S, Niedermayr, A, Gallmann, L, Rubio, A, Keller, U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623
cites cdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623
container_end_page e2221725120
container_issue 15
container_start_page e2221725120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Schumacher, Z
Sato, S A
Neb, S
Niedermayr, A
Gallmann, L
Rubio, A
Keller, U
description The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe , that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov , , 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.
doi_str_mv 10.1073/pnas.2221725120
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795357596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJaFy359zCQi65bDL61p5CME1bCARCfRaKVmvLyJIjrQPpX1-5Tt00p2FmfvN4w0PoFMMlBkmvNtGUS0IIloRjAh_QBEOHW8E6OEITACJbxQg7QZ9KWQFAxxV8RCdUAmaKdxP0MA9jNoMpY-OCs2NOsQnJmuB_mdHXxsS-KTY7F31cNL4OmnoQi_-zXbvRhKb3dmmCTYsK9e4zOh5MKO7La52i-e3Xn7Pv7d39tx-zm7vWMkLGthsApFBECKDGArWD7B-xpMpYwmkvCAgKnaRUYWqFFIQPjjvHBXCGa0un6Hqvu9k-rl1vXazGgt5kvzb5RSfj9f-b6Jd6kZ41BgyMKVYVLl4VcnraujLqtS_WhWCiS9uiiew45ZJ3oqLn79BV2uZY_9NEAQFV7e4sXe0pm1Mp2Q0HNxj0LjC9C0z_C6xenL194sD_TYj-Bl-SkTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802082062</pqid></control><display><type>article</type><title>Ultrafast electron localization and screening in a transition metal dichalcogenide</title><source>Open Access: PubMed Central</source><creator>Schumacher, Z ; Sato, S A ; Neb, S ; Niedermayr, A ; Gallmann, L ; Rubio, A ; Keller, U</creator><creatorcontrib>Schumacher, Z ; Sato, S A ; Neb, S ; Niedermayr, A ; Gallmann, L ; Rubio, A ; Keller, U</creatorcontrib><description>The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe , that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov , , 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2221725120</identifier><identifier>PMID: 37014859</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption spectroscopy ; Chalcogenides ; Conduction bands ; Current carriers ; Electromagnetic absorption ; Electronic properties ; Electrons ; Localization ; Metals ; Molybdenum ; Physical Sciences ; Selenium ; Semiconductors ; Titanium ; Transition metal compounds</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2221725120-e2221725120</ispartof><rights>Copyright National Academy of Sciences Apr 11, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</citedby><cites>FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</cites><orcidid>0000-0003-2060-3151 ; 0000-0003-3167-8271 ; 0000-0001-9543-2620 ; 0000-0002-1689-8041 ; 0000-0002-8684-7442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104484/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104484/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schumacher, Z</creatorcontrib><creatorcontrib>Sato, S A</creatorcontrib><creatorcontrib>Neb, S</creatorcontrib><creatorcontrib>Niedermayr, A</creatorcontrib><creatorcontrib>Gallmann, L</creatorcontrib><creatorcontrib>Rubio, A</creatorcontrib><creatorcontrib>Keller, U</creatorcontrib><title>Ultrafast electron localization and screening in a transition metal dichalcogenide</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe , that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov , , 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.</description><subject>Absorption spectroscopy</subject><subject>Chalcogenides</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Electromagnetic absorption</subject><subject>Electronic properties</subject><subject>Electrons</subject><subject>Localization</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Physical Sciences</subject><subject>Selenium</subject><subject>Semiconductors</subject><subject>Titanium</subject><subject>Transition metal compounds</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVJaFy359zCQi65bDL61p5CME1bCARCfRaKVmvLyJIjrQPpX1-5Tt00p2FmfvN4w0PoFMMlBkmvNtGUS0IIloRjAh_QBEOHW8E6OEITACJbxQg7QZ9KWQFAxxV8RCdUAmaKdxP0MA9jNoMpY-OCs2NOsQnJmuB_mdHXxsS-KTY7F31cNL4OmnoQi_-zXbvRhKb3dmmCTYsK9e4zOh5MKO7La52i-e3Xn7Pv7d39tx-zm7vWMkLGthsApFBECKDGArWD7B-xpMpYwmkvCAgKnaRUYWqFFIQPjjvHBXCGa0un6Hqvu9k-rl1vXazGgt5kvzb5RSfj9f-b6Jd6kZ41BgyMKVYVLl4VcnraujLqtS_WhWCiS9uiiew45ZJ3oqLn79BV2uZY_9NEAQFV7e4sXe0pm1Mp2Q0HNxj0LjC9C0z_C6xenL194sD_TYj-Bl-SkTw</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Schumacher, Z</creator><creator>Sato, S A</creator><creator>Neb, S</creator><creator>Niedermayr, A</creator><creator>Gallmann, L</creator><creator>Rubio, A</creator><creator>Keller, U</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2060-3151</orcidid><orcidid>https://orcid.org/0000-0003-3167-8271</orcidid><orcidid>https://orcid.org/0000-0001-9543-2620</orcidid><orcidid>https://orcid.org/0000-0002-1689-8041</orcidid><orcidid>https://orcid.org/0000-0002-8684-7442</orcidid></search><sort><creationdate>20230411</creationdate><title>Ultrafast electron localization and screening in a transition metal dichalcogenide</title><author>Schumacher, Z ; Sato, S A ; Neb, S ; Niedermayr, A ; Gallmann, L ; Rubio, A ; Keller, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Chalcogenides</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Electromagnetic absorption</topic><topic>Electronic properties</topic><topic>Electrons</topic><topic>Localization</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Physical Sciences</topic><topic>Selenium</topic><topic>Semiconductors</topic><topic>Titanium</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumacher, Z</creatorcontrib><creatorcontrib>Sato, S A</creatorcontrib><creatorcontrib>Neb, S</creatorcontrib><creatorcontrib>Niedermayr, A</creatorcontrib><creatorcontrib>Gallmann, L</creatorcontrib><creatorcontrib>Rubio, A</creatorcontrib><creatorcontrib>Keller, U</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumacher, Z</au><au>Sato, S A</au><au>Neb, S</au><au>Niedermayr, A</au><au>Gallmann, L</au><au>Rubio, A</au><au>Keller, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast electron localization and screening in a transition metal dichalcogenide</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>120</volume><issue>15</issue><spage>e2221725120</spage><epage>e2221725120</epage><pages>e2221725120-e2221725120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe , that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov , , 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37014859</pmid><doi>10.1073/pnas.2221725120</doi><orcidid>https://orcid.org/0000-0003-2060-3151</orcidid><orcidid>https://orcid.org/0000-0003-3167-8271</orcidid><orcidid>https://orcid.org/0000-0001-9543-2620</orcidid><orcidid>https://orcid.org/0000-0002-1689-8041</orcidid><orcidid>https://orcid.org/0000-0002-8684-7442</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2221725120-e2221725120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104484
source Open Access: PubMed Central
subjects Absorption spectroscopy
Chalcogenides
Conduction bands
Current carriers
Electromagnetic absorption
Electronic properties
Electrons
Localization
Metals
Molybdenum
Physical Sciences
Selenium
Semiconductors
Titanium
Transition metal compounds
title Ultrafast electron localization and screening in a transition metal dichalcogenide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20electron%20localization%20and%20screening%20in%20a%20transition%20metal%20dichalcogenide&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schumacher,%20Z&rft.date=2023-04-11&rft.volume=120&rft.issue=15&rft.spage=e2221725120&rft.epage=e2221725120&rft.pages=e2221725120-e2221725120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2221725120&rft_dat=%3Cproquest_pubme%3E2795357596%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802082062&rft_id=info:pmid/37014859&rfr_iscdi=true