Loading…
Ultrafast electron localization and screening in a transition metal dichalcogenide
The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields....
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (15), p.e2221725120-e2221725120 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623 |
container_end_page | e2221725120 |
container_issue | 15 |
container_start_page | e2221725120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Schumacher, Z Sato, S A Neb, S Niedermayr, A Gallmann, L Rubio, A Keller, U |
description | The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe
, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov
,
, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials. |
doi_str_mv | 10.1073/pnas.2221725120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795357596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVJaFy359zCQi65bDL61p5CME1bCARCfRaKVmvLyJIjrQPpX1-5Tt00p2FmfvN4w0PoFMMlBkmvNtGUS0IIloRjAh_QBEOHW8E6OEITACJbxQg7QZ9KWQFAxxV8RCdUAmaKdxP0MA9jNoMpY-OCs2NOsQnJmuB_mdHXxsS-KTY7F31cNL4OmnoQi_-zXbvRhKb3dmmCTYsK9e4zOh5MKO7La52i-e3Xn7Pv7d39tx-zm7vWMkLGthsApFBECKDGArWD7B-xpMpYwmkvCAgKnaRUYWqFFIQPjjvHBXCGa0un6Hqvu9k-rl1vXazGgt5kvzb5RSfj9f-b6Jd6kZ41BgyMKVYVLl4VcnraujLqtS_WhWCiS9uiiew45ZJ3oqLn79BV2uZY_9NEAQFV7e4sXe0pm1Mp2Q0HNxj0LjC9C0z_C6xenL194sD_TYj-Bl-SkTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802082062</pqid></control><display><type>article</type><title>Ultrafast electron localization and screening in a transition metal dichalcogenide</title><source>Open Access: PubMed Central</source><creator>Schumacher, Z ; Sato, S A ; Neb, S ; Niedermayr, A ; Gallmann, L ; Rubio, A ; Keller, U</creator><creatorcontrib>Schumacher, Z ; Sato, S A ; Neb, S ; Niedermayr, A ; Gallmann, L ; Rubio, A ; Keller, U</creatorcontrib><description>The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe
, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov
,
, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2221725120</identifier><identifier>PMID: 37014859</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption spectroscopy ; Chalcogenides ; Conduction bands ; Current carriers ; Electromagnetic absorption ; Electronic properties ; Electrons ; Localization ; Metals ; Molybdenum ; Physical Sciences ; Selenium ; Semiconductors ; Titanium ; Transition metal compounds</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2221725120-e2221725120</ispartof><rights>Copyright National Academy of Sciences Apr 11, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</citedby><cites>FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</cites><orcidid>0000-0003-2060-3151 ; 0000-0003-3167-8271 ; 0000-0001-9543-2620 ; 0000-0002-1689-8041 ; 0000-0002-8684-7442</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104484/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104484/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schumacher, Z</creatorcontrib><creatorcontrib>Sato, S A</creatorcontrib><creatorcontrib>Neb, S</creatorcontrib><creatorcontrib>Niedermayr, A</creatorcontrib><creatorcontrib>Gallmann, L</creatorcontrib><creatorcontrib>Rubio, A</creatorcontrib><creatorcontrib>Keller, U</creatorcontrib><title>Ultrafast electron localization and screening in a transition metal dichalcogenide</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe
, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov
,
, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.</description><subject>Absorption spectroscopy</subject><subject>Chalcogenides</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Electromagnetic absorption</subject><subject>Electronic properties</subject><subject>Electrons</subject><subject>Localization</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Physical Sciences</subject><subject>Selenium</subject><subject>Semiconductors</subject><subject>Titanium</subject><subject>Transition metal compounds</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVJaFy359zCQi65bDL61p5CME1bCARCfRaKVmvLyJIjrQPpX1-5Tt00p2FmfvN4w0PoFMMlBkmvNtGUS0IIloRjAh_QBEOHW8E6OEITACJbxQg7QZ9KWQFAxxV8RCdUAmaKdxP0MA9jNoMpY-OCs2NOsQnJmuB_mdHXxsS-KTY7F31cNL4OmnoQi_-zXbvRhKb3dmmCTYsK9e4zOh5MKO7La52i-e3Xn7Pv7d39tx-zm7vWMkLGthsApFBECKDGArWD7B-xpMpYwmkvCAgKnaRUYWqFFIQPjjvHBXCGa0un6Hqvu9k-rl1vXazGgt5kvzb5RSfj9f-b6Jd6kZ41BgyMKVYVLl4VcnraujLqtS_WhWCiS9uiiew45ZJ3oqLn79BV2uZY_9NEAQFV7e4sXe0pm1Mp2Q0HNxj0LjC9C0z_C6xenL194sD_TYj-Bl-SkTw</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Schumacher, Z</creator><creator>Sato, S A</creator><creator>Neb, S</creator><creator>Niedermayr, A</creator><creator>Gallmann, L</creator><creator>Rubio, A</creator><creator>Keller, U</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2060-3151</orcidid><orcidid>https://orcid.org/0000-0003-3167-8271</orcidid><orcidid>https://orcid.org/0000-0001-9543-2620</orcidid><orcidid>https://orcid.org/0000-0002-1689-8041</orcidid><orcidid>https://orcid.org/0000-0002-8684-7442</orcidid></search><sort><creationdate>20230411</creationdate><title>Ultrafast electron localization and screening in a transition metal dichalcogenide</title><author>Schumacher, Z ; Sato, S A ; Neb, S ; Niedermayr, A ; Gallmann, L ; Rubio, A ; Keller, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Chalcogenides</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Electromagnetic absorption</topic><topic>Electronic properties</topic><topic>Electrons</topic><topic>Localization</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Physical Sciences</topic><topic>Selenium</topic><topic>Semiconductors</topic><topic>Titanium</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumacher, Z</creatorcontrib><creatorcontrib>Sato, S A</creatorcontrib><creatorcontrib>Neb, S</creatorcontrib><creatorcontrib>Niedermayr, A</creatorcontrib><creatorcontrib>Gallmann, L</creatorcontrib><creatorcontrib>Rubio, A</creatorcontrib><creatorcontrib>Keller, U</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumacher, Z</au><au>Sato, S A</au><au>Neb, S</au><au>Niedermayr, A</au><au>Gallmann, L</au><au>Rubio, A</au><au>Keller, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast electron localization and screening in a transition metal dichalcogenide</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>120</volume><issue>15</issue><spage>e2221725120</spage><epage>e2221725120</epage><pages>e2221725120-e2221725120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe
, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov
,
, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37014859</pmid><doi>10.1073/pnas.2221725120</doi><orcidid>https://orcid.org/0000-0003-2060-3151</orcidid><orcidid>https://orcid.org/0000-0003-3167-8271</orcidid><orcidid>https://orcid.org/0000-0001-9543-2620</orcidid><orcidid>https://orcid.org/0000-0002-1689-8041</orcidid><orcidid>https://orcid.org/0000-0002-8684-7442</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2221725120-e2221725120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104484 |
source | Open Access: PubMed Central |
subjects | Absorption spectroscopy Chalcogenides Conduction bands Current carriers Electromagnetic absorption Electronic properties Electrons Localization Metals Molybdenum Physical Sciences Selenium Semiconductors Titanium Transition metal compounds |
title | Ultrafast electron localization and screening in a transition metal dichalcogenide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20electron%20localization%20and%20screening%20in%20a%20transition%20metal%20dichalcogenide&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schumacher,%20Z&rft.date=2023-04-11&rft.volume=120&rft.issue=15&rft.spage=e2221725120&rft.epage=e2221725120&rft.pages=e2221725120-e2221725120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2221725120&rft_dat=%3Cproquest_pubme%3E2795357596%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-9f0076826603ac03cf7db1738ac253d6206309733813c67625fe5ee5605417623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802082062&rft_id=info:pmid/37014859&rfr_iscdi=true |