Loading…

High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering

Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual l...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (15), p.e2213149120-e2213149120
Main Authors: Zeng, Xiangrui, Kahng, Anson, Xue, Liang, Mahamid, Julia, Chang, Yi-Wei, Xu, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3
cites cdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3
container_end_page e2213149120
container_issue 15
container_start_page e2213149120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Zeng, Xiangrui
Kahng, Anson
Xue, Liang
Mahamid, Julia
Chang, Yi-Wei
Xu, Min
description Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.
doi_str_mv 10.1073/pnas.2213149120
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802097137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</originalsourceid><addsrcrecordid>eNpdkc1LHTEUxYO01Kft2l0JdONmNDcfM5NVKaK1IHRj1yGTyZsXmUmm-Xjw_nsjWmu7ulzO7x7u4SB0BuQCSMcuV6_TBaXAgEug5AhtgEhoWi7JO7QhhHZNzyk_RicpPRBCpOjJB3TMuqpwKjdounXTrsm7GMq0W0vGJh5Cc32PU47F5BL1jFeds40eL847P-HhgItPZbVx75Id8Wjtil0ldHZ7i1MZcljCFPWCzVxSFerVR_R-q-dkP73MU_Tr5vr-6ra5-_n9x9W3u8ZwSnPD6QCsG7bcCg5s1AOnph0H2kLfWuC0E7zuom0BgHdCjEL2ppcDG7dM2H5kp-jrs-9ahsWOxvpcI6g1ukXHgwraqX8V73ZqCnsFBAgXglWH8xeHGH4Xm7JaXDJ2nrW3oSRFO9l3QDmXFf3yH_oQSvQ1n6I9oUR2NUylLp8pE0NK0W5fvwGinlpUTy2qvy3Wi89vQ7zyf2pjj8trmuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802097137</pqid></control><display><type>article</type><title>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</title><source>PubMed Central</source><creator>Zeng, Xiangrui ; Kahng, Anson ; Xue, Liang ; Mahamid, Julia ; Chang, Yi-Wei ; Xu, Min</creator><creatorcontrib>Zeng, Xiangrui ; Kahng, Anson ; Xue, Liang ; Mahamid, Julia ; Chang, Yi-Wei ; Xu, Min</creatorcontrib><description>Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2213149120</identifier><identifier>PMID: 37027429</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cellular structure ; Cluster Analysis ; Clustering ; Cryoelectron Microscopy - methods ; Data mining ; Deep learning ; Electron Microscope Tomography - methods ; Homogeneous structure ; Image Processing, Computer-Assisted - methods ; Iterative methods ; Macromolecular Substances - chemistry ; Macromolecules ; Molecular Structure ; Pattern analysis ; Physical Sciences ; Three dimensional models</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2213149120-e2213149120</ispartof><rights>Copyright National Academy of Sciences Apr 11, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</citedby><cites>FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</cites><orcidid>0000-0003-2391-473X ; 0000-0002-0881-5891 ; 0000-0001-6968-041X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Xiangrui</creatorcontrib><creatorcontrib>Kahng, Anson</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Mahamid, Julia</creatorcontrib><creatorcontrib>Chang, Yi-Wei</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><title>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.</description><subject>Biological Sciences</subject><subject>Cellular structure</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Electron Microscope Tomography - methods</subject><subject>Homogeneous structure</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Iterative methods</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecules</subject><subject>Molecular Structure</subject><subject>Pattern analysis</subject><subject>Physical Sciences</subject><subject>Three dimensional models</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LHTEUxYO01Kft2l0JdONmNDcfM5NVKaK1IHRj1yGTyZsXmUmm-Xjw_nsjWmu7ulzO7x7u4SB0BuQCSMcuV6_TBaXAgEug5AhtgEhoWi7JO7QhhHZNzyk_RicpPRBCpOjJB3TMuqpwKjdounXTrsm7GMq0W0vGJh5Cc32PU47F5BL1jFeds40eL847P-HhgItPZbVx75Id8Wjtil0ldHZ7i1MZcljCFPWCzVxSFerVR_R-q-dkP73MU_Tr5vr-6ra5-_n9x9W3u8ZwSnPD6QCsG7bcCg5s1AOnph0H2kLfWuC0E7zuom0BgHdCjEL2ppcDG7dM2H5kp-jrs-9ahsWOxvpcI6g1ukXHgwraqX8V73ZqCnsFBAgXglWH8xeHGH4Xm7JaXDJ2nrW3oSRFO9l3QDmXFf3yH_oQSvQ1n6I9oUR2NUylLp8pE0NK0W5fvwGinlpUTy2qvy3Wi89vQ7zyf2pjj8trmuY</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Zeng, Xiangrui</creator><creator>Kahng, Anson</creator><creator>Xue, Liang</creator><creator>Mahamid, Julia</creator><creator>Chang, Yi-Wei</creator><creator>Xu, Min</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2391-473X</orcidid><orcidid>https://orcid.org/0000-0002-0881-5891</orcidid><orcidid>https://orcid.org/0000-0001-6968-041X</orcidid></search><sort><creationdate>20230411</creationdate><title>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</title><author>Zeng, Xiangrui ; Kahng, Anson ; Xue, Liang ; Mahamid, Julia ; Chang, Yi-Wei ; Xu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Sciences</topic><topic>Cellular structure</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Electron Microscope Tomography - methods</topic><topic>Homogeneous structure</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Iterative methods</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecules</topic><topic>Molecular Structure</topic><topic>Pattern analysis</topic><topic>Physical Sciences</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xiangrui</creatorcontrib><creatorcontrib>Kahng, Anson</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Mahamid, Julia</creatorcontrib><creatorcontrib>Chang, Yi-Wei</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xiangrui</au><au>Kahng, Anson</au><au>Xue, Liang</au><au>Mahamid, Julia</au><au>Chang, Yi-Wei</au><au>Xu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>120</volume><issue>15</issue><spage>e2213149120</spage><epage>e2213149120</epage><pages>e2213149120-e2213149120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37027429</pmid><doi>10.1073/pnas.2213149120</doi><orcidid>https://orcid.org/0000-0003-2391-473X</orcidid><orcidid>https://orcid.org/0000-0002-0881-5891</orcidid><orcidid>https://orcid.org/0000-0001-6968-041X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2213149120-e2213149120
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104553
source PubMed Central
subjects Biological Sciences
Cellular structure
Cluster Analysis
Clustering
Cryoelectron Microscopy - methods
Data mining
Deep learning
Electron Microscope Tomography - methods
Homogeneous structure
Image Processing, Computer-Assisted - methods
Iterative methods
Macromolecular Substances - chemistry
Macromolecules
Molecular Structure
Pattern analysis
Physical Sciences
Three dimensional models
title High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20cryo-ET%20structural%20pattern%20mining%20by%20unsupervised%20deep%20iterative%20subtomogram%20clustering&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zeng,%20Xiangrui&rft.date=2023-04-11&rft.volume=120&rft.issue=15&rft.spage=e2213149120&rft.epage=e2213149120&rft.pages=e2213149120-e2213149120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2213149120&rft_dat=%3Cproquest_pubme%3E2802097137%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802097137&rft_id=info:pmid/37027429&rfr_iscdi=true