Loading…
High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering
Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual l...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (15), p.e2213149120-e2213149120 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3 |
container_end_page | e2213149120 |
container_issue | 15 |
container_start_page | e2213149120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 120 |
creator | Zeng, Xiangrui Kahng, Anson Xue, Liang Mahamid, Julia Chang, Yi-Wei Xu, Min |
description | Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ. |
doi_str_mv | 10.1073/pnas.2213149120 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802097137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</originalsourceid><addsrcrecordid>eNpdkc1LHTEUxYO01Kft2l0JdONmNDcfM5NVKaK1IHRj1yGTyZsXmUmm-Xjw_nsjWmu7ulzO7x7u4SB0BuQCSMcuV6_TBaXAgEug5AhtgEhoWi7JO7QhhHZNzyk_RicpPRBCpOjJB3TMuqpwKjdounXTrsm7GMq0W0vGJh5Cc32PU47F5BL1jFeds40eL847P-HhgItPZbVx75Id8Wjtil0ldHZ7i1MZcljCFPWCzVxSFerVR_R-q-dkP73MU_Tr5vr-6ra5-_n9x9W3u8ZwSnPD6QCsG7bcCg5s1AOnph0H2kLfWuC0E7zuom0BgHdCjEL2ppcDG7dM2H5kp-jrs-9ahsWOxvpcI6g1ukXHgwraqX8V73ZqCnsFBAgXglWH8xeHGH4Xm7JaXDJ2nrW3oSRFO9l3QDmXFf3yH_oQSvQ1n6I9oUR2NUylLp8pE0NK0W5fvwGinlpUTy2qvy3Wi89vQ7zyf2pjj8trmuY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802097137</pqid></control><display><type>article</type><title>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</title><source>PubMed Central</source><creator>Zeng, Xiangrui ; Kahng, Anson ; Xue, Liang ; Mahamid, Julia ; Chang, Yi-Wei ; Xu, Min</creator><creatorcontrib>Zeng, Xiangrui ; Kahng, Anson ; Xue, Liang ; Mahamid, Julia ; Chang, Yi-Wei ; Xu, Min</creatorcontrib><description>Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2213149120</identifier><identifier>PMID: 37027429</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cellular structure ; Cluster Analysis ; Clustering ; Cryoelectron Microscopy - methods ; Data mining ; Deep learning ; Electron Microscope Tomography - methods ; Homogeneous structure ; Image Processing, Computer-Assisted - methods ; Iterative methods ; Macromolecular Substances - chemistry ; Macromolecules ; Molecular Structure ; Pattern analysis ; Physical Sciences ; Three dimensional models</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2213149120-e2213149120</ispartof><rights>Copyright National Academy of Sciences Apr 11, 2023</rights><rights>Copyright © 2023 the Author(s). Published by PNAS. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</citedby><cites>FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</cites><orcidid>0000-0003-2391-473X ; 0000-0002-0881-5891 ; 0000-0001-6968-041X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37027429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Xiangrui</creatorcontrib><creatorcontrib>Kahng, Anson</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Mahamid, Julia</creatorcontrib><creatorcontrib>Chang, Yi-Wei</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><title>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.</description><subject>Biological Sciences</subject><subject>Cellular structure</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Electron Microscope Tomography - methods</subject><subject>Homogeneous structure</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Iterative methods</subject><subject>Macromolecular Substances - chemistry</subject><subject>Macromolecules</subject><subject>Molecular Structure</subject><subject>Pattern analysis</subject><subject>Physical Sciences</subject><subject>Three dimensional models</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LHTEUxYO01Kft2l0JdONmNDcfM5NVKaK1IHRj1yGTyZsXmUmm-Xjw_nsjWmu7ulzO7x7u4SB0BuQCSMcuV6_TBaXAgEug5AhtgEhoWi7JO7QhhHZNzyk_RicpPRBCpOjJB3TMuqpwKjdounXTrsm7GMq0W0vGJh5Cc32PU47F5BL1jFeds40eL847P-HhgItPZbVx75Id8Wjtil0ldHZ7i1MZcljCFPWCzVxSFerVR_R-q-dkP73MU_Tr5vr-6ra5-_n9x9W3u8ZwSnPD6QCsG7bcCg5s1AOnph0H2kLfWuC0E7zuom0BgHdCjEL2ppcDG7dM2H5kp-jrs-9ahsWOxvpcI6g1ukXHgwraqX8V73ZqCnsFBAgXglWH8xeHGH4Xm7JaXDJ2nrW3oSRFO9l3QDmXFf3yH_oQSvQ1n6I9oUR2NUylLp8pE0NK0W5fvwGinlpUTy2qvy3Wi89vQ7zyf2pjj8trmuY</recordid><startdate>20230411</startdate><enddate>20230411</enddate><creator>Zeng, Xiangrui</creator><creator>Kahng, Anson</creator><creator>Xue, Liang</creator><creator>Mahamid, Julia</creator><creator>Chang, Yi-Wei</creator><creator>Xu, Min</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2391-473X</orcidid><orcidid>https://orcid.org/0000-0002-0881-5891</orcidid><orcidid>https://orcid.org/0000-0001-6968-041X</orcidid></search><sort><creationdate>20230411</creationdate><title>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</title><author>Zeng, Xiangrui ; Kahng, Anson ; Xue, Liang ; Mahamid, Julia ; Chang, Yi-Wei ; Xu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Sciences</topic><topic>Cellular structure</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Electron Microscope Tomography - methods</topic><topic>Homogeneous structure</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Iterative methods</topic><topic>Macromolecular Substances - chemistry</topic><topic>Macromolecules</topic><topic>Molecular Structure</topic><topic>Pattern analysis</topic><topic>Physical Sciences</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xiangrui</creatorcontrib><creatorcontrib>Kahng, Anson</creatorcontrib><creatorcontrib>Xue, Liang</creatorcontrib><creatorcontrib>Mahamid, Julia</creatorcontrib><creatorcontrib>Chang, Yi-Wei</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xiangrui</au><au>Kahng, Anson</au><au>Xue, Liang</au><au>Mahamid, Julia</au><au>Chang, Yi-Wei</au><au>Xu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-11</date><risdate>2023</risdate><volume>120</volume><issue>15</issue><spage>e2213149120</spage><epage>e2213149120</epage><pages>e2213149120-e2213149120</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>37027429</pmid><doi>10.1073/pnas.2213149120</doi><orcidid>https://orcid.org/0000-0003-2391-473X</orcidid><orcidid>https://orcid.org/0000-0002-0881-5891</orcidid><orcidid>https://orcid.org/0000-0001-6968-041X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (15), p.e2213149120-e2213149120 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104553 |
source | PubMed Central |
subjects | Biological Sciences Cellular structure Cluster Analysis Clustering Cryoelectron Microscopy - methods Data mining Deep learning Electron Microscope Tomography - methods Homogeneous structure Image Processing, Computer-Assisted - methods Iterative methods Macromolecular Substances - chemistry Macromolecules Molecular Structure Pattern analysis Physical Sciences Three dimensional models |
title | High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20cryo-ET%20structural%20pattern%20mining%20by%20unsupervised%20deep%20iterative%20subtomogram%20clustering&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zeng,%20Xiangrui&rft.date=2023-04-11&rft.volume=120&rft.issue=15&rft.spage=e2213149120&rft.epage=e2213149120&rft.pages=e2213149120-e2213149120&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2213149120&rft_dat=%3Cproquest_pubme%3E2802097137%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-42b137bf4e5413dab42c6db26186e142754c6d5661114755d598c89b3df35e8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802097137&rft_id=info:pmid/37027429&rfr_iscdi=true |