Loading…

Size distributions of intracellular condensates reflect competition between coalescence and nucleation

Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by cond...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2023, Vol.19 (4), p.586-596
Main Authors: Lee, Daniel S. W., Choi, Chang-Hyun, Sanders, David W., Beckers, Lien, Riback, Joshua A., Brangwynne, Clifford P., Wingreen, Ned S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3
cites cdi_FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3
container_end_page 596
container_issue 4
container_start_page 586
container_title Nature physics
container_volume 19
creator Lee, Daniel S. W.
Choi, Chang-Hyun
Sanders, David W.
Beckers, Lien
Riback, Joshua A.
Brangwynne, Clifford P.
Wingreen, Ned S.
description Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here we show that both native and synthetic condensates display an exponential size distribution, which is captured by Monte Carlo simulations of fast nucleation followed by coalescence. In contrast, pathological aggregates exhibit a power-law size distribution. These distinct behaviours reflect the relative importance of nucleation and coalescence kinetics. We demonstrate this by utilizing a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. The appearance of exponential distributions for abrupt nucleation versus power-law distributions under continuous nucleation may reflect a general principle that determines condensate size distributions. Biomolecular condensates play a role in cellular processes and their size affects reaction pathways. The size distribution is connected to varying contributions of nucleation and coalescence.
doi_str_mv 10.1038/s41567-022-01917-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2801040099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhi0Eohd4ARYoEptuQsd2fJKsEKpKQarUBbC2bGdcXOXYB9sBwdMz4ZTDZcHKY_ubfy4_Y884vOQgh_PScbXpWxCiBT5yih6wY953qhXdwB8e4l4esZNS7gA6seHyMTuSPfSyA3nM_PvwHZsplJqDXWpIsTTJNyHWbBzO8zKb3LgUJ4zFVCxNRj-jq_S23WENa0ZjsX5FjPRmZiwOo8PGxKmJi5vRrMgT9sibueDT-_OUfXxz-eHibXt9c_Xu4vV167pe1VbAYJX0QBcrx4kaVrZTblQIwioFgwe_4XySaKz0qkPHcXC8txMYN3ojT9mrve5usVucqBWaY9a7HLYmf9PJBP33Twyf9G36ojlwqtqPpHB2r5DT5wVL1dtQ1k2YiGkpWgwgpRgJJvTFP-hdWnKk-VaK9ADGVVDsKZdTKbS-Qzcc9Oqj3vuoyUf900cNlPT8zzkOKb-MI0DugUJf8Rbz79r_kf0BIoerbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2801040099</pqid></control><display><type>article</type><title>Size distributions of intracellular condensates reflect competition between coalescence and nucleation</title><source>Nature</source><creator>Lee, Daniel S. W. ; Choi, Chang-Hyun ; Sanders, David W. ; Beckers, Lien ; Riback, Joshua A. ; Brangwynne, Clifford P. ; Wingreen, Ned S.</creator><creatorcontrib>Lee, Daniel S. W. ; Choi, Chang-Hyun ; Sanders, David W. ; Beckers, Lien ; Riback, Joshua A. ; Brangwynne, Clifford P. ; Wingreen, Ned S.</creatorcontrib><description>Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here we show that both native and synthetic condensates display an exponential size distribution, which is captured by Monte Carlo simulations of fast nucleation followed by coalescence. In contrast, pathological aggregates exhibit a power-law size distribution. These distinct behaviours reflect the relative importance of nucleation and coalescence kinetics. We demonstrate this by utilizing a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. The appearance of exponential distributions for abrupt nucleation versus power-law distributions under continuous nucleation may reflect a general principle that determines condensate size distributions. Biomolecular condensates play a role in cellular processes and their size affects reaction pathways. The size distribution is connected to varying contributions of nucleation and coalescence.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-022-01917-0</identifier><identifier>PMID: 37073403</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 639/301/923/966 ; Atomic ; Bioengineering ; Biomolecules ; Classical and Continuum Physics ; Clustering ; Coalescence ; Complex Systems ; Condensates ; Condensed Matter Physics ; Enzymes ; Mathematical and Computational Physics ; Molecular ; Monte Carlo simulation ; Nucleation ; Optical and Plasma Physics ; Phase separation ; Physics ; Physics and Astronomy ; Physiology ; Power law ; Proteins ; Simulation ; Size distribution ; Theoretical</subject><ispartof>Nature physics, 2023, Vol.19 (4), p.586-596</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023.</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3</citedby><cites>FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3</cites><orcidid>0000-0001-7384-2821 ; 0000-0002-9091-3932 ; 0000-0002-1516-4484 ; 0000-0002-1350-9960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37073403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Daniel S. W.</creatorcontrib><creatorcontrib>Choi, Chang-Hyun</creatorcontrib><creatorcontrib>Sanders, David W.</creatorcontrib><creatorcontrib>Beckers, Lien</creatorcontrib><creatorcontrib>Riback, Joshua A.</creatorcontrib><creatorcontrib>Brangwynne, Clifford P.</creatorcontrib><creatorcontrib>Wingreen, Ned S.</creatorcontrib><title>Size distributions of intracellular condensates reflect competition between coalescence and nucleation</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here we show that both native and synthetic condensates display an exponential size distribution, which is captured by Monte Carlo simulations of fast nucleation followed by coalescence. In contrast, pathological aggregates exhibit a power-law size distribution. These distinct behaviours reflect the relative importance of nucleation and coalescence kinetics. We demonstrate this by utilizing a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. The appearance of exponential distributions for abrupt nucleation versus power-law distributions under continuous nucleation may reflect a general principle that determines condensate size distributions. Biomolecular condensates play a role in cellular processes and their size affects reaction pathways. The size distribution is connected to varying contributions of nucleation and coalescence.</description><subject>631/57</subject><subject>639/301/923/966</subject><subject>Atomic</subject><subject>Bioengineering</subject><subject>Biomolecules</subject><subject>Classical and Continuum Physics</subject><subject>Clustering</subject><subject>Coalescence</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Enzymes</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Monte Carlo simulation</subject><subject>Nucleation</subject><subject>Optical and Plasma Physics</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physiology</subject><subject>Power law</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Size distribution</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1TAQhi0Eohd4ARYoEptuQsd2fJKsEKpKQarUBbC2bGdcXOXYB9sBwdMz4ZTDZcHKY_ubfy4_Y884vOQgh_PScbXpWxCiBT5yih6wY953qhXdwB8e4l4esZNS7gA6seHyMTuSPfSyA3nM_PvwHZsplJqDXWpIsTTJNyHWbBzO8zKb3LgUJ4zFVCxNRj-jq_S23WENa0ZjsX5FjPRmZiwOo8PGxKmJi5vRrMgT9sibueDT-_OUfXxz-eHibXt9c_Xu4vV167pe1VbAYJX0QBcrx4kaVrZTblQIwioFgwe_4XySaKz0qkPHcXC8txMYN3ojT9mrve5usVucqBWaY9a7HLYmf9PJBP33Twyf9G36ojlwqtqPpHB2r5DT5wVL1dtQ1k2YiGkpWgwgpRgJJvTFP-hdWnKk-VaK9ADGVVDsKZdTKbS-Qzcc9Oqj3vuoyUf900cNlPT8zzkOKb-MI0DugUJf8Rbz79r_kf0BIoerbw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Lee, Daniel S. W.</creator><creator>Choi, Chang-Hyun</creator><creator>Sanders, David W.</creator><creator>Beckers, Lien</creator><creator>Riback, Joshua A.</creator><creator>Brangwynne, Clifford P.</creator><creator>Wingreen, Ned S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7384-2821</orcidid><orcidid>https://orcid.org/0000-0002-9091-3932</orcidid><orcidid>https://orcid.org/0000-0002-1516-4484</orcidid><orcidid>https://orcid.org/0000-0002-1350-9960</orcidid></search><sort><creationdate>2023</creationdate><title>Size distributions of intracellular condensates reflect competition between coalescence and nucleation</title><author>Lee, Daniel S. W. ; Choi, Chang-Hyun ; Sanders, David W. ; Beckers, Lien ; Riback, Joshua A. ; Brangwynne, Clifford P. ; Wingreen, Ned S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/57</topic><topic>639/301/923/966</topic><topic>Atomic</topic><topic>Bioengineering</topic><topic>Biomolecules</topic><topic>Classical and Continuum Physics</topic><topic>Clustering</topic><topic>Coalescence</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Enzymes</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Monte Carlo simulation</topic><topic>Nucleation</topic><topic>Optical and Plasma Physics</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physiology</topic><topic>Power law</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Size distribution</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Daniel S. W.</creatorcontrib><creatorcontrib>Choi, Chang-Hyun</creatorcontrib><creatorcontrib>Sanders, David W.</creatorcontrib><creatorcontrib>Beckers, Lien</creatorcontrib><creatorcontrib>Riback, Joshua A.</creatorcontrib><creatorcontrib>Brangwynne, Clifford P.</creatorcontrib><creatorcontrib>Wingreen, Ned S.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Daniel S. W.</au><au>Choi, Chang-Hyun</au><au>Sanders, David W.</au><au>Beckers, Lien</au><au>Riback, Joshua A.</au><au>Brangwynne, Clifford P.</au><au>Wingreen, Ned S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size distributions of intracellular condensates reflect competition between coalescence and nucleation</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2023</date><risdate>2023</risdate><volume>19</volume><issue>4</issue><spage>586</spage><epage>596</epage><pages>586-596</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Phase separation of biomolecules into condensates has emerged as a mechanism for intracellular organization and affects many intracellular processes, including reaction pathways through the clustering of enzymes and pathway intermediates. Precise and rapid spatiotemporal control of reactions by condensates requires tuning of their sizes. However, the physical processes that govern the distribution of condensate sizes remain unclear. Here we show that both native and synthetic condensates display an exponential size distribution, which is captured by Monte Carlo simulations of fast nucleation followed by coalescence. In contrast, pathological aggregates exhibit a power-law size distribution. These distinct behaviours reflect the relative importance of nucleation and coalescence kinetics. We demonstrate this by utilizing a combination of synthetic and native condensates to probe the underlying physical mechanisms determining condensate size. The appearance of exponential distributions for abrupt nucleation versus power-law distributions under continuous nucleation may reflect a general principle that determines condensate size distributions. Biomolecular condensates play a role in cellular processes and their size affects reaction pathways. The size distribution is connected to varying contributions of nucleation and coalescence.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37073403</pmid><doi>10.1038/s41567-022-01917-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7384-2821</orcidid><orcidid>https://orcid.org/0000-0002-9091-3932</orcidid><orcidid>https://orcid.org/0000-0002-1516-4484</orcidid><orcidid>https://orcid.org/0000-0002-1350-9960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2023, Vol.19 (4), p.586-596
issn 1745-2473
1745-2481
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10104779
source Nature
subjects 631/57
639/301/923/966
Atomic
Bioengineering
Biomolecules
Classical and Continuum Physics
Clustering
Coalescence
Complex Systems
Condensates
Condensed Matter Physics
Enzymes
Mathematical and Computational Physics
Molecular
Monte Carlo simulation
Nucleation
Optical and Plasma Physics
Phase separation
Physics
Physics and Astronomy
Physiology
Power law
Proteins
Simulation
Size distribution
Theoretical
title Size distributions of intracellular condensates reflect competition between coalescence and nucleation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A57%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20distributions%20of%20intracellular%20condensates%20reflect%20competition%20between%20coalescence%20and%20nucleation&rft.jtitle=Nature%20physics&rft.au=Lee,%20Daniel%20S.%20W.&rft.date=2023&rft.volume=19&rft.issue=4&rft.spage=586&rft.epage=596&rft.pages=586-596&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-022-01917-0&rft_dat=%3Cproquest_pubme%3E2801040099%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-208b53f0475b39d0045b45c95e02b5508f0f611d3eab3f54ec1e8c17bd0ac9fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2801040099&rft_id=info:pmid/37073403&rfr_iscdi=true