Loading…

The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range

Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of evolutionary biology 2023-02, Vol.36 (2), p.381-398
Main Authors: Thia, Joshua A., Korhonen, Pasi K., Young, Neil D., Gasser, Robin B., Umina, Paul A., Yang, Qiong, Edwards, Owain, Walsh, Tom, Hoffmann, Ary A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53
cites cdi_FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53
container_end_page 398
container_issue 2
container_start_page 381
container_title Journal of evolutionary biology
container_volume 36
creator Thia, Joshua A.
Korhonen, Pasi K.
Young, Neil D.
Gasser, Robin B.
Umina, Paul A.
Yang, Qiong
Edwards, Owain
Walsh, Tom
Hoffmann, Ary A.
description Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole‐genome pool‐seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target‐site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target‐site mutations (G119S, A201S and F331Y) segregating in organophosphate‐resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping‐stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.
doi_str_mv 10.1111/jeb.14144
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771257356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53</originalsourceid><addsrcrecordid>eNp1kctu1TAQhiMEohdY8ALIEhu6SGs7cS4rVKpyqSqxaaXuLMeeJD5K7GAnqc5T8MrM6SkVIHU2Hmu--T2eP0neMXrKMM420JyynOX5i-SQ5ZymNaPsJeaU0ZQW7O4gOYpxQykrciFeJwdZIcqs5vww-XXTAwlgBug6MARUmHsy2hmICaqdSQfOj0Cm4FdrIBIH98S6aLt-jpjMnkwQZ6uxiDLRxlk5DQRWPyyz9Y4oZ4iB0XdBTf0WW4h96FxVtCuQ8yXOQQ1WORKU6-BN8qpVQ4S3j-dxcvvl8ubiW3r94-v3i_PrVOcYqS4ZVRktS1NTmmW54KbNKw1csLrUUOClaDQvtaIiqyirmrZpDYeWUV4JLbLj5NNed1qaEYwGtxtDTsGOKmylV1b-W3G2l51f5W6n-DhHhY-PCsH_XHAJcrRRwzAoB36JkpeiEmVRFwzRD_-hG78Eh_9DqmQczRAFUid7SgcfY4D2aRpG5c5niT7LB5-Rff_3-E_kH2MRONsD93aA7fNK8ury817yN7frtNU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771257356</pqid></control><display><type>article</type><title>The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range</title><source>Wiley-Blackwell Journals</source><source>Oxford Journals Online</source><creator>Thia, Joshua A. ; Korhonen, Pasi K. ; Young, Neil D. ; Gasser, Robin B. ; Umina, Paul A. ; Yang, Qiong ; Edwards, Owain ; Walsh, Tom ; Hoffmann, Ary A.</creator><creatorcontrib>Thia, Joshua A. ; Korhonen, Pasi K. ; Young, Neil D. ; Gasser, Robin B. ; Umina, Paul A. ; Yang, Qiong ; Edwards, Owain ; Walsh, Tom ; Hoffmann, Ary A.</creatorcontrib><description>Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole‐genome pool‐seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target‐site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target‐site mutations (G119S, A201S and F331Y) segregating in organophosphate‐resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping‐stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.</description><identifier>ISSN: 1010-061X</identifier><identifier>EISSN: 1420-9101</identifier><identifier>DOI: 10.1111/jeb.14144</identifier><identifier>PMID: 36573922</identifier><language>eng</language><publisher>Switzerland: Blackwell Publishing Ltd</publisher><subject>ACE protein ; acetylcholinesterase ; agricultural pests ; Animals ; Australia ; Chemical pest control ; Copy number ; demographic inference ; Demography ; DNA Copy Number Variations ; Evolution ; gene amplification ; Gene flow ; Genetic diversity ; Genetic markers ; Genome ; Genomes ; Genomic analysis ; Halotydeus destructor ; invasive species ; Mites ; Mites - genetics ; Mutation ; Organophosphates ; Pest control ; Pesticide resistance ; Pesticides ; Pests ; Population Dynamics ; population genomics ; Populations ; Prediction models ; Pyrethroids ; Sodium channels</subject><ispartof>Journal of evolutionary biology, 2023-02, Vol.36 (2), p.381-398</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of European Society for Evolutionary Biology.</rights><rights>2022 The Authors. Journal of Evolutionary Biology published by John Wiley &amp; Sons Ltd on behalf of European Society for Evolutionary Biology.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53</citedby><cites>FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53</cites><orcidid>0000-0001-8425-0135 ; 0000-0002-1835-3571 ; 0000-0002-4423-1690 ; 0000-0001-9084-0959 ; 0000-0003-3336-5703 ; 0000-0003-3861-7906 ; 0000-0001-8756-229X ; 0000-0002-9957-4674 ; 0000-0001-9497-7645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjeb.14144$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjeb.14144$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36573922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thia, Joshua A.</creatorcontrib><creatorcontrib>Korhonen, Pasi K.</creatorcontrib><creatorcontrib>Young, Neil D.</creatorcontrib><creatorcontrib>Gasser, Robin B.</creatorcontrib><creatorcontrib>Umina, Paul A.</creatorcontrib><creatorcontrib>Yang, Qiong</creatorcontrib><creatorcontrib>Edwards, Owain</creatorcontrib><creatorcontrib>Walsh, Tom</creatorcontrib><creatorcontrib>Hoffmann, Ary A.</creatorcontrib><title>The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range</title><title>Journal of evolutionary biology</title><addtitle>J Evol Biol</addtitle><description>Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole‐genome pool‐seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target‐site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target‐site mutations (G119S, A201S and F331Y) segregating in organophosphate‐resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping‐stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.</description><subject>ACE protein</subject><subject>acetylcholinesterase</subject><subject>agricultural pests</subject><subject>Animals</subject><subject>Australia</subject><subject>Chemical pest control</subject><subject>Copy number</subject><subject>demographic inference</subject><subject>Demography</subject><subject>DNA Copy Number Variations</subject><subject>Evolution</subject><subject>gene amplification</subject><subject>Gene flow</subject><subject>Genetic diversity</subject><subject>Genetic markers</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Halotydeus destructor</subject><subject>invasive species</subject><subject>Mites</subject><subject>Mites - genetics</subject><subject>Mutation</subject><subject>Organophosphates</subject><subject>Pest control</subject><subject>Pesticide resistance</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Population Dynamics</subject><subject>population genomics</subject><subject>Populations</subject><subject>Prediction models</subject><subject>Pyrethroids</subject><subject>Sodium channels</subject><issn>1010-061X</issn><issn>1420-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kctu1TAQhiMEohdY8ALIEhu6SGs7cS4rVKpyqSqxaaXuLMeeJD5K7GAnqc5T8MrM6SkVIHU2Hmu--T2eP0neMXrKMM420JyynOX5i-SQ5ZymNaPsJeaU0ZQW7O4gOYpxQykrciFeJwdZIcqs5vww-XXTAwlgBug6MARUmHsy2hmICaqdSQfOj0Cm4FdrIBIH98S6aLt-jpjMnkwQZ6uxiDLRxlk5DQRWPyyz9Y4oZ4iB0XdBTf0WW4h96FxVtCuQ8yXOQQ1WORKU6-BN8qpVQ4S3j-dxcvvl8ubiW3r94-v3i_PrVOcYqS4ZVRktS1NTmmW54KbNKw1csLrUUOClaDQvtaIiqyirmrZpDYeWUV4JLbLj5NNed1qaEYwGtxtDTsGOKmylV1b-W3G2l51f5W6n-DhHhY-PCsH_XHAJcrRRwzAoB36JkpeiEmVRFwzRD_-hG78Eh_9DqmQczRAFUid7SgcfY4D2aRpG5c5niT7LB5-Rff_3-E_kH2MRONsD93aA7fNK8ury817yN7frtNU</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Thia, Joshua A.</creator><creator>Korhonen, Pasi K.</creator><creator>Young, Neil D.</creator><creator>Gasser, Robin B.</creator><creator>Umina, Paul A.</creator><creator>Yang, Qiong</creator><creator>Edwards, Owain</creator><creator>Walsh, Tom</creator><creator>Hoffmann, Ary A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8425-0135</orcidid><orcidid>https://orcid.org/0000-0002-1835-3571</orcidid><orcidid>https://orcid.org/0000-0002-4423-1690</orcidid><orcidid>https://orcid.org/0000-0001-9084-0959</orcidid><orcidid>https://orcid.org/0000-0003-3336-5703</orcidid><orcidid>https://orcid.org/0000-0003-3861-7906</orcidid><orcidid>https://orcid.org/0000-0001-8756-229X</orcidid><orcidid>https://orcid.org/0000-0002-9957-4674</orcidid><orcidid>https://orcid.org/0000-0001-9497-7645</orcidid></search><sort><creationdate>202302</creationdate><title>The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range</title><author>Thia, Joshua A. ; Korhonen, Pasi K. ; Young, Neil D. ; Gasser, Robin B. ; Umina, Paul A. ; Yang, Qiong ; Edwards, Owain ; Walsh, Tom ; Hoffmann, Ary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ACE protein</topic><topic>acetylcholinesterase</topic><topic>agricultural pests</topic><topic>Animals</topic><topic>Australia</topic><topic>Chemical pest control</topic><topic>Copy number</topic><topic>demographic inference</topic><topic>Demography</topic><topic>DNA Copy Number Variations</topic><topic>Evolution</topic><topic>gene amplification</topic><topic>Gene flow</topic><topic>Genetic diversity</topic><topic>Genetic markers</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Halotydeus destructor</topic><topic>invasive species</topic><topic>Mites</topic><topic>Mites - genetics</topic><topic>Mutation</topic><topic>Organophosphates</topic><topic>Pest control</topic><topic>Pesticide resistance</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Population Dynamics</topic><topic>population genomics</topic><topic>Populations</topic><topic>Prediction models</topic><topic>Pyrethroids</topic><topic>Sodium channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thia, Joshua A.</creatorcontrib><creatorcontrib>Korhonen, Pasi K.</creatorcontrib><creatorcontrib>Young, Neil D.</creatorcontrib><creatorcontrib>Gasser, Robin B.</creatorcontrib><creatorcontrib>Umina, Paul A.</creatorcontrib><creatorcontrib>Yang, Qiong</creatorcontrib><creatorcontrib>Edwards, Owain</creatorcontrib><creatorcontrib>Walsh, Tom</creatorcontrib><creatorcontrib>Hoffmann, Ary A.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of evolutionary biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thia, Joshua A.</au><au>Korhonen, Pasi K.</au><au>Young, Neil D.</au><au>Gasser, Robin B.</au><au>Umina, Paul A.</au><au>Yang, Qiong</au><au>Edwards, Owain</au><au>Walsh, Tom</au><au>Hoffmann, Ary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range</atitle><jtitle>Journal of evolutionary biology</jtitle><addtitle>J Evol Biol</addtitle><date>2023-02</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>381</spage><epage>398</epage><pages>381-398</pages><issn>1010-061X</issn><eissn>1420-9101</eissn><abstract>Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole‐genome pool‐seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target‐site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target‐site mutations (G119S, A201S and F331Y) segregating in organophosphate‐resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping‐stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.</abstract><cop>Switzerland</cop><pub>Blackwell Publishing Ltd</pub><pmid>36573922</pmid><doi>10.1111/jeb.14144</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8425-0135</orcidid><orcidid>https://orcid.org/0000-0002-1835-3571</orcidid><orcidid>https://orcid.org/0000-0002-4423-1690</orcidid><orcidid>https://orcid.org/0000-0001-9084-0959</orcidid><orcidid>https://orcid.org/0000-0003-3336-5703</orcidid><orcidid>https://orcid.org/0000-0003-3861-7906</orcidid><orcidid>https://orcid.org/0000-0001-8756-229X</orcidid><orcidid>https://orcid.org/0000-0002-9957-4674</orcidid><orcidid>https://orcid.org/0000-0001-9497-7645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1010-061X
ispartof Journal of evolutionary biology, 2023-02, Vol.36 (2), p.381-398
issn 1010-061X
1420-9101
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10107102
source Wiley-Blackwell Journals; Oxford Journals Online
subjects ACE protein
acetylcholinesterase
agricultural pests
Animals
Australia
Chemical pest control
Copy number
demographic inference
Demography
DNA Copy Number Variations
Evolution
gene amplification
Gene flow
Genetic diversity
Genetic markers
Genome
Genomes
Genomic analysis
Halotydeus destructor
invasive species
Mites
Mites - genetics
Mutation
Organophosphates
Pest control
Pesticide resistance
Pesticides
Pests
Population Dynamics
population genomics
Populations
Prediction models
Pyrethroids
Sodium channels
title The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20redlegged%20earth%20mite%20draft%20genome%20provides%20new%20insights%20into%20pesticide%20resistance%20evolution%20and%20demography%20in%20its%20invasive%20Australian%20range&rft.jtitle=Journal%20of%20evolutionary%20biology&rft.au=Thia,%20Joshua%20A.&rft.date=2023-02&rft.volume=36&rft.issue=2&rft.spage=381&rft.epage=398&rft.pages=381-398&rft.issn=1010-061X&rft.eissn=1420-9101&rft_id=info:doi/10.1111/jeb.14144&rft_dat=%3Cproquest_pubme%3E2771257356%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4444-c710a3077d90033452df48ce25197ce6f486bc27ca0538018bfbfd2ef10285c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771257356&rft_id=info:pmid/36573922&rfr_iscdi=true