Loading…

Effect of Annealing on Graphene/PVDF Nanocomposites

In this study, the process for tuning the electrical properties of graphene/polyvinylidene fluoride (Gr/PVDF) nanocomposite films by a thermal annealing process is explored. The surface morphology and microstructure of the nanocomposite were characterized. The effect of temperature on the electrical...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2023-04, Vol.8 (15), p.13876-13883
Main Authors: Samoei, Victor K., Maharjan, Surendra, Sano, Keiichiro, Jayatissa, Ahalapitiya H.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the process for tuning the electrical properties of graphene/polyvinylidene fluoride (Gr/PVDF) nanocomposite films by a thermal annealing process is explored. The surface morphology and microstructure of the nanocomposite were characterized. The effect of temperature on the electrical conductivity was investigated by heating and cooling the sample from the room temperature up to 150 °C. The effect of annealing on the electrical conductivity was recorded as a function of annealing temperature. A Hall effect measurement was conducted as a function of annealing temperatures to obtain Hall voltage (V H), carrier mobility (μH), carrier concentration (n H), Hall coefficient (R H), resistivity, and carrier conductivity type (n or p). It was found that the films annealed at 150 °C exhibited the best electrical conductivity of Gr/PVDF films. This study may provide an insight into the development and utilization of Gr/PVDF films in future electronics and the potential applications in various sectors such as aerospace, automotive, and biomedical industries.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c00283