Loading…

Single nucleotide polymorphism detection by combinatorial fluorescence energy transfer tags and biotinylated dideoxynucleotides

Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE)...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2002-03, Vol.30 (5), p.e19-e19
Main Authors: Tong, Anthony K, Ju, Jingyue
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3'-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3'-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.
ISSN:1362-4962
0305-1048
1362-4962
DOI:10.1093/nar/30.5.e19