Loading…

The Origin of Anion−π Autocatalysis

The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion−π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion−...

Full description

Saved in:
Bibliographic Details
Published in:JACS Au 2023-04, Vol.3 (4), p.1039-1051
Main Authors: Gutiérrez López, M. Ángeles, Tan, Mei-Ling, Frontera, Antonio, Matile, Stefan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3
cites cdi_FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3
container_end_page 1051
container_issue 4
container_start_page 1039
container_title JACS Au
container_volume 3
creator Gutiérrez López, M. Ángeles
Tan, Mei-Ling
Frontera, Antonio
Matile, Stefan
description The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion−π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion−π autocatalysis has never been elucidated. Here, we show that anion−π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion−π autocatalysis and sometimes erratic reproducibility further support that the origin of anion−π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion−π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by “anion−π double bonds”. This new transition-state model of anion−π autocatalysis provides a plausible mechanism that explains experimental results and brings anion−π catalysis to an unprecedented level of sophistication.
doi_str_mv 10.1021/jacsau.2c00656
format article
fullrecord <record><control><sourceid>proquest_N~.</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10131205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808214556</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3</originalsourceid><addsrcrecordid>eNp1kD1LA0EQhhdRTIhpLSWViHBxZ3fvq5IQ_IJAmlgv-5Vkw-U27t4J6Syt_WP-B3-JJxdDLKxmYJ55Z3gQOgc8BEzgZiVUEPWQKIyTODlCXZLkENEUs-ODvoP6IawwxiQGihN8ijo0BcIo4C66nC3NYOrtwpYDNx-MSuvKr_ePz7fBqK6cEpUotsGGM3QyF0Uw_V3toef7u9n4MZpMH57Go0kkGEmqSKU5i2XMFAGhtdAZFTLXVLE8j1VKmACT0ZyChkRqBWCklCLTLJdKSIMl7aHbNndTy7XRypSVFwXfeLsWfsudsPzvpLRLvnCvHDBQIDhuEq52Cd691CZUfG2DMkUhSuPqwEmGMwIsjpMGHbao8i4Eb-b7O4D5j2DeCuY7wc3CxeF3e_xXZwNct0Czx1eu9mUj67-0b6MHhzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808214556</pqid></control><display><type>article</type><title>The Origin of Anion−π Autocatalysis</title><source>American Chemical Society (ACS) Open Access Journals</source><creator>Gutiérrez López, M. Ángeles ; Tan, Mei-Ling ; Frontera, Antonio ; Matile, Stefan</creator><creatorcontrib>Gutiérrez López, M. Ángeles ; Tan, Mei-Ling ; Frontera, Antonio ; Matile, Stefan</creatorcontrib><description>The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion−π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion−π autocatalysis has never been elucidated. Here, we show that anion−π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion−π autocatalysis and sometimes erratic reproducibility further support that the origin of anion−π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion−π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by “anion−π double bonds”. This new transition-state model of anion−π autocatalysis provides a plausible mechanism that explains experimental results and brings anion−π catalysis to an unprecedented level of sophistication.</description><identifier>ISSN: 2691-3704</identifier><identifier>EISSN: 2691-3704</identifier><identifier>DOI: 10.1021/jacsau.2c00656</identifier><identifier>PMID: 37124310</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>JACS Au, 2023-04, Vol.3 (4), p.1039-1051</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society.</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3</citedby><cites>FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3</cites><orcidid>0000-0001-7840-2139 ; 0000-0002-8537-8349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacsau.2c00656$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacsau.2c00656$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27079,27923,27924,53790,53792,56761,56811</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1021/jacsau.2c00656$$EView_record_in_American_Chemical_Society$$FView_record_in_$$GAmerican_Chemical_Society</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37124310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutiérrez López, M. Ángeles</creatorcontrib><creatorcontrib>Tan, Mei-Ling</creatorcontrib><creatorcontrib>Frontera, Antonio</creatorcontrib><creatorcontrib>Matile, Stefan</creatorcontrib><title>The Origin of Anion−π Autocatalysis</title><title>JACS Au</title><addtitle>JACS Au</addtitle><description>The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion−π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion−π autocatalysis has never been elucidated. Here, we show that anion−π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion−π autocatalysis and sometimes erratic reproducibility further support that the origin of anion−π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion−π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by “anion−π double bonds”. This new transition-state model of anion−π autocatalysis provides a plausible mechanism that explains experimental results and brings anion−π catalysis to an unprecedented level of sophistication.</description><issn>2691-3704</issn><issn>2691-3704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1LA0EQhhdRTIhpLSWViHBxZ3fvq5IQ_IJAmlgv-5Vkw-U27t4J6Syt_WP-B3-JJxdDLKxmYJ55Z3gQOgc8BEzgZiVUEPWQKIyTODlCXZLkENEUs-ODvoP6IawwxiQGihN8ijo0BcIo4C66nC3NYOrtwpYDNx-MSuvKr_ePz7fBqK6cEpUotsGGM3QyF0Uw_V3toef7u9n4MZpMH57Go0kkGEmqSKU5i2XMFAGhtdAZFTLXVLE8j1VKmACT0ZyChkRqBWCklCLTLJdKSIMl7aHbNndTy7XRypSVFwXfeLsWfsudsPzvpLRLvnCvHDBQIDhuEq52Cd691CZUfG2DMkUhSuPqwEmGMwIsjpMGHbao8i4Eb-b7O4D5j2DeCuY7wc3CxeF3e_xXZwNct0Czx1eu9mUj67-0b6MHhzk</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Gutiérrez López, M. Ángeles</creator><creator>Tan, Mei-Ling</creator><creator>Frontera, Antonio</creator><creator>Matile, Stefan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7840-2139</orcidid><orcidid>https://orcid.org/0000-0002-8537-8349</orcidid></search><sort><creationdate>20230424</creationdate><title>The Origin of Anion−π Autocatalysis</title><author>Gutiérrez López, M. Ángeles ; Tan, Mei-Ling ; Frontera, Antonio ; Matile, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez López, M. Ángeles</creatorcontrib><creatorcontrib>Tan, Mei-Ling</creatorcontrib><creatorcontrib>Frontera, Antonio</creatorcontrib><creatorcontrib>Matile, Stefan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JACS Au</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gutiérrez López, M. Ángeles</au><au>Tan, Mei-Ling</au><au>Frontera, Antonio</au><au>Matile, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Origin of Anion−π Autocatalysis</atitle><jtitle>JACS Au</jtitle><addtitle>JACS Au</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>3</volume><issue>4</issue><spage>1039</spage><epage>1051</epage><pages>1039-1051</pages><issn>2691-3704</issn><eissn>2691-3704</eissn><abstract>The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion−π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion−π autocatalysis has never been elucidated. Here, we show that anion−π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion−π autocatalysis and sometimes erratic reproducibility further support that the origin of anion−π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion−π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by “anion−π double bonds”. This new transition-state model of anion−π autocatalysis provides a plausible mechanism that explains experimental results and brings anion−π catalysis to an unprecedented level of sophistication.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37124310</pmid><doi>10.1021/jacsau.2c00656</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7840-2139</orcidid><orcidid>https://orcid.org/0000-0002-8537-8349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2691-3704
ispartof JACS Au, 2023-04, Vol.3 (4), p.1039-1051
issn 2691-3704
2691-3704
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10131205
source American Chemical Society (ACS) Open Access Journals
title The Origin of Anion−π Autocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_N~.&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Origin%20of%20Anion%E2%88%92%CF%80%20Autocatalysis&rft.jtitle=JACS%20Au&rft.au=Gutie%CC%81rrez%20Lo%CC%81pez,%20M.%20A%CC%81ngeles&rft.date=2023-04-24&rft.volume=3&rft.issue=4&rft.spage=1039&rft.epage=1051&rft.pages=1039-1051&rft.issn=2691-3704&rft.eissn=2691-3704&rft_id=info:doi/10.1021/jacsau.2c00656&rft_dat=%3Cproquest_N~.%3E2808214556%3C/proquest_N~.%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a426t-c7945b54c21addad83ab9d3c4995c724a1e83931d16bdc11ebbba8d49bcabe0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808214556&rft_id=info:pmid/37124310&rfr_iscdi=true