Loading…

Jet-Cooled Phosphorescence Excitation Spectrum of the T1(n,π) ← S0 Transition of 4H‑Pyran-4-one

The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)­excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in th...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-04, Vol.127 (16), p.3636-3647
Main Authors: Parsons, Sean W., Hucek, Devon G., Mishra, Piyush, Plusquellic, David F., Zwier, Timothy S., Drucker, Stephen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3647
container_issue 16
container_start_page 3636
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 127
creator Parsons, Sean W.
Hucek, Devon G.
Mishra, Piyush
Plusquellic, David F.
Zwier, Timothy S.
Drucker, Stephen
description The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)­excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in the excited state. We report here the T1(n,π*) ← S0 phosphorescence excitation spectrum of 4PN, recorded under the cooling conditions of a supersonic free-jet expansion. The jet cooling has eliminated congestion appearing in previous room-temperature measurements of the T1 ← S0 band system and has enabled us to determine precise fundamental frequencies for seven vibrational modes of the molecule in its T1(n,π*) state. We have also analyzed the rotational contour of the 00 0 band, obtaining experimental values for spin–spin and spin-rotation constants of the T1(n,π*) state. We used the experimental results to test predictions from two commonly used computational methods, equation-of-motion excitation energies with dynamical correlation incorporated at the level of coupled cluster singles doubles (EOM-EE-CCSD) and time-dependent density functional theory (TDDFT). We find that each method predicts harmonic frequencies within a few percent of observed fundamentals, for in-plane vibrational modes. However, for out-of-plane modes, each method has specific liabilities that result in frequency errors on the order of 20–30%. The calculations have helped to identify a perturbation from the T2(π,π*) state that leads to unexpected features observed in the T1(n,π*) ← S0 origin band rotational contour.
doi_str_mv 10.1021/acs.jpca.3c01059
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2802424120</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-3a9f0ec4dc16636a0c7c5f76ba687afef9a1c243158a4b440b671fe4153f3eac3</originalsourceid><addsrcrecordid>eNpVkU1O40AQhVtoEOFvz9JLRoozVf1jxyuEogAzQgKJsG5VOt0TR47b47YR7FjNeuYGnIULzB04CT0hG1ZVevX0pFcfYycIIwSO38iE0aoxNBIGEFSxw_ZRcUgVR_Ul7jAuUpWJYsAOQlgBAAou99hA5JDlkOM-cz9sl068r-wiuV360Cx9a4OxtbHJ9NGUHXWlr5O7xpqu7deJd0m3tMkMT-vhv-evry9vv_-8vtxBMmupDuXGHD3y6u357-1T1FKZ-toesV1HVbDH23nI7i-ms8lVen1z-X1yfp2S4KJLBRUOrJELg1kmMgKTG-XybE7ZOCdnXUFouBSoxiTnUsI8y9FZiUo4YcmIQ3b2kdv087VdxB5dS5Vu2nJN7ZP2VOrPl7pc6p_-QSOgAlHwmHC6TWj9r96GTq_L-I-qotr6Pmg-Bi65RA7ROvywRgx65fu2jtVikv7PRm_EyEZv2Yh377GGYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2802424120</pqid></control><display><type>article</type><title>Jet-Cooled Phosphorescence Excitation Spectrum of the T1(n,π) ← S0 Transition of 4H‑Pyran-4-one</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Parsons, Sean W. ; Hucek, Devon G. ; Mishra, Piyush ; Plusquellic, David F. ; Zwier, Timothy S. ; Drucker, Stephen</creator><creatorcontrib>Parsons, Sean W. ; Hucek, Devon G. ; Mishra, Piyush ; Plusquellic, David F. ; Zwier, Timothy S. ; Drucker, Stephen</creatorcontrib><description>The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)­excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in the excited state. We report here the T1(n,π*) ← S0 phosphorescence excitation spectrum of 4PN, recorded under the cooling conditions of a supersonic free-jet expansion. The jet cooling has eliminated congestion appearing in previous room-temperature measurements of the T1 ← S0 band system and has enabled us to determine precise fundamental frequencies for seven vibrational modes of the molecule in its T1(n,π*) state. We have also analyzed the rotational contour of the 00 0 band, obtaining experimental values for spin–spin and spin-rotation constants of the T1(n,π*) state. We used the experimental results to test predictions from two commonly used computational methods, equation-of-motion excitation energies with dynamical correlation incorporated at the level of coupled cluster singles doubles (EOM-EE-CCSD) and time-dependent density functional theory (TDDFT). We find that each method predicts harmonic frequencies within a few percent of observed fundamentals, for in-plane vibrational modes. However, for out-of-plane modes, each method has specific liabilities that result in frequency errors on the order of 20–30%. The calculations have helped to identify a perturbation from the T2(π,π*) state that leads to unexpected features observed in the T1(n,π*) ← S0 origin band rotational contour.</description><identifier>ISSN: 1089-5639</identifier><identifier>ISSN: 1520-5215</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c01059</identifier><identifier>PMID: 37067071</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2023-04, Vol.127 (16), p.3636-3647</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3474-7930 ; 0000-0002-4468-5748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids></links><search><creatorcontrib>Parsons, Sean W.</creatorcontrib><creatorcontrib>Hucek, Devon G.</creatorcontrib><creatorcontrib>Mishra, Piyush</creatorcontrib><creatorcontrib>Plusquellic, David F.</creatorcontrib><creatorcontrib>Zwier, Timothy S.</creatorcontrib><creatorcontrib>Drucker, Stephen</creatorcontrib><title>Jet-Cooled Phosphorescence Excitation Spectrum of the T1(n,π) ← S0 Transition of 4H‑Pyran-4-one</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)­excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in the excited state. We report here the T1(n,π*) ← S0 phosphorescence excitation spectrum of 4PN, recorded under the cooling conditions of a supersonic free-jet expansion. The jet cooling has eliminated congestion appearing in previous room-temperature measurements of the T1 ← S0 band system and has enabled us to determine precise fundamental frequencies for seven vibrational modes of the molecule in its T1(n,π*) state. We have also analyzed the rotational contour of the 00 0 band, obtaining experimental values for spin–spin and spin-rotation constants of the T1(n,π*) state. We used the experimental results to test predictions from two commonly used computational methods, equation-of-motion excitation energies with dynamical correlation incorporated at the level of coupled cluster singles doubles (EOM-EE-CCSD) and time-dependent density functional theory (TDDFT). We find that each method predicts harmonic frequencies within a few percent of observed fundamentals, for in-plane vibrational modes. However, for out-of-plane modes, each method has specific liabilities that result in frequency errors on the order of 20–30%. The calculations have helped to identify a perturbation from the T2(π,π*) state that leads to unexpected features observed in the T1(n,π*) ← S0 origin band rotational contour.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkU1O40AQhVtoEOFvz9JLRoozVf1jxyuEogAzQgKJsG5VOt0TR47b47YR7FjNeuYGnIULzB04CT0hG1ZVevX0pFcfYycIIwSO38iE0aoxNBIGEFSxw_ZRcUgVR_Ul7jAuUpWJYsAOQlgBAAou99hA5JDlkOM-cz9sl068r-wiuV360Cx9a4OxtbHJ9NGUHXWlr5O7xpqu7deJd0m3tMkMT-vhv-evry9vv_-8vtxBMmupDuXGHD3y6u357-1T1FKZ-toesV1HVbDH23nI7i-ms8lVen1z-X1yfp2S4KJLBRUOrJELg1kmMgKTG-XybE7ZOCdnXUFouBSoxiTnUsI8y9FZiUo4YcmIQ3b2kdv087VdxB5dS5Vu2nJN7ZP2VOrPl7pc6p_-QSOgAlHwmHC6TWj9r96GTq_L-I-qotr6Pmg-Bi65RA7ROvywRgx65fu2jtVikv7PRm_EyEZv2Yh377GGYQ</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Parsons, Sean W.</creator><creator>Hucek, Devon G.</creator><creator>Mishra, Piyush</creator><creator>Plusquellic, David F.</creator><creator>Zwier, Timothy S.</creator><creator>Drucker, Stephen</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3474-7930</orcidid><orcidid>https://orcid.org/0000-0002-4468-5748</orcidid></search><sort><creationdate>20230427</creationdate><title>Jet-Cooled Phosphorescence Excitation Spectrum of the T1(n,π) ← S0 Transition of 4H‑Pyran-4-one</title><author>Parsons, Sean W. ; Hucek, Devon G. ; Mishra, Piyush ; Plusquellic, David F. ; Zwier, Timothy S. ; Drucker, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-3a9f0ec4dc16636a0c7c5f76ba687afef9a1c243158a4b440b671fe4153f3eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, Sean W.</creatorcontrib><creatorcontrib>Hucek, Devon G.</creatorcontrib><creatorcontrib>Mishra, Piyush</creatorcontrib><creatorcontrib>Plusquellic, David F.</creatorcontrib><creatorcontrib>Zwier, Timothy S.</creatorcontrib><creatorcontrib>Drucker, Stephen</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, Sean W.</au><au>Hucek, Devon G.</au><au>Mishra, Piyush</au><au>Plusquellic, David F.</au><au>Zwier, Timothy S.</au><au>Drucker, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jet-Cooled Phosphorescence Excitation Spectrum of the T1(n,π) ← S0 Transition of 4H‑Pyran-4-one</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2023-04-27</date><risdate>2023</risdate><volume>127</volume><issue>16</issue><spage>3636</spage><epage>3647</epage><pages>3636-3647</pages><issn>1089-5639</issn><issn>1520-5215</issn><eissn>1520-5215</eissn><abstract>The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)­excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in the excited state. We report here the T1(n,π*) ← S0 phosphorescence excitation spectrum of 4PN, recorded under the cooling conditions of a supersonic free-jet expansion. The jet cooling has eliminated congestion appearing in previous room-temperature measurements of the T1 ← S0 band system and has enabled us to determine precise fundamental frequencies for seven vibrational modes of the molecule in its T1(n,π*) state. We have also analyzed the rotational contour of the 00 0 band, obtaining experimental values for spin–spin and spin-rotation constants of the T1(n,π*) state. We used the experimental results to test predictions from two commonly used computational methods, equation-of-motion excitation energies with dynamical correlation incorporated at the level of coupled cluster singles doubles (EOM-EE-CCSD) and time-dependent density functional theory (TDDFT). We find that each method predicts harmonic frequencies within a few percent of observed fundamentals, for in-plane vibrational modes. However, for out-of-plane modes, each method has specific liabilities that result in frequency errors on the order of 20–30%. The calculations have helped to identify a perturbation from the T2(π,π*) state that leads to unexpected features observed in the T1(n,π*) ← S0 origin band rotational contour.</abstract><pub>American Chemical Society</pub><pmid>37067071</pmid><doi>10.1021/acs.jpca.3c01059</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3474-7930</orcidid><orcidid>https://orcid.org/0000-0002-4468-5748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-04, Vol.127 (16), p.3636-3647
issn 1089-5639
1520-5215
1520-5215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150392
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
title Jet-Cooled Phosphorescence Excitation Spectrum of the T1(n,π) ← S0 Transition of 4H‑Pyran-4-one
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jet-Cooled%20Phosphorescence%20Excitation%20Spectrum%20of%20the%20T1(n,%CF%80)%C2%A0%E2%86%90%C2%A0S0%20Transition%20of%204H%E2%80%91Pyran-4-one&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Parsons,%20Sean%20W.&rft.date=2023-04-27&rft.volume=127&rft.issue=16&rft.spage=3636&rft.epage=3647&rft.pages=3636-3647&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c01059&rft_dat=%3Cproquest_pubme%3E2802424120%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a323t-3a9f0ec4dc16636a0c7c5f76ba687afef9a1c243158a4b440b671fe4153f3eac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2802424120&rft_id=info:pmid/37067071&rfr_iscdi=true