Loading…

Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo

How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment is constantly changing? We addressed the role of spike timing-dependent plasticity (STDP) in driving changes in synaptic strength in a sensory pathway and whether those changes in synaptic strengt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology 2023-05, Vol.129 (5), p.1127-1144
Main Authors: Lube, Adalee J, Ma, Xiaofeng, Carlson, Bruce A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment is constantly changing? We addressed the role of spike timing-dependent plasticity (STDP) in driving changes in synaptic strength in a sensory pathway and whether those changes in synaptic strength could alter sensory tuning. It is challenging to precisely control temporal patterns of synaptic activity in vivo and replicate those patterns in vitro in behaviorally relevant ways. This makes it difficult to make connections between STDP-induced changes in synaptic physiology and plasticity in sensory systems. Using the mormyrid species and , which produce electric organ discharges for electrolocation and communication, we can precisely control the timing of synaptic input in vivo and replicate these same temporal patterns of synaptic input in vitro. In central electrosensory neurons in the electric communication pathway, using whole cell intracellular recordings in vitro, we paired presynaptic input with postsynaptic spiking at different delays. Using whole cell intracellular recordings in awake, behaving fish, we paired sensory stimulation with postsynaptic spiking using the same delays. We found that Hebbian STDP predictably alters sensory tuning in vitro and is mediated by NMDA receptors. However, the change in synaptic responses induced by sensory stimulation in vivo did not adhere to the direction predicted by the STDP observed in vitro. Further analysis suggests that this difference is influenced by polysynaptic activity, including inhibitory interneurons. Our findings suggest that STDP rules operating at identified synapses may not drive predictable changes in sensory responses at the circuit level. We replicated behaviorally relevant temporal patterns of synaptic activity in vitro and used the same patterns during sensory stimulation in vivo. There was a Hebbian spike timing-dependent plasticity (STDP) pattern in vitro, but sensory responses in vivo did not shift according to STDP predictions. Analysis suggests that this disparity is influenced by differences in polysynaptic activity, including inhibitory interneurons. These results suggest that STDP rules at synapses in vitro do not necessarily apply to circuits in vivo.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00498.2022