Loading…

The effect of light emission spectrum on biohydrogen production by Rhodopseudomonas palustris

Photofermentative hydrogen production has gained increasing attention as a source of green energy. To make such photofermentation processes economically competitive, operating costs need to be reduced, possibly through outdoor operation. Because photofermentation processes are light dependent, the e...

Full description

Saved in:
Bibliographic Details
Published in:Bioprocess and biosystems engineering 2023-06, Vol.46 (6), p.913-919
Main Authors: Bosman, Catharine Elizabeth, Pott, Robert William McClelland, Bradshaw, Steven Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photofermentative hydrogen production has gained increasing attention as a source of green energy. To make such photofermentation processes economically competitive, operating costs need to be reduced, possibly through outdoor operation. Because photofermentation processes are light dependent, the emission spectrum and intensity of light both have a significant influence on the hydrogen production and merit investigation. This study investigates the effect of light sources on the hydrogen production and growth of Rhodopseudomonas palustris , comparing the organism’s productivity under longer-wavelength light and light mimicking sunlight. Hydrogen production is enhanced under longer-wavelength light, producing 26.8% (± 7.3%) more hydrogen as compared to under light mimicking that of sunlight; however, R. palustris is still able to produce a considerable volume of hydrogen under light with a spectrum mimicking that of sunlight, providing a promising avenue for future research.
ISSN:1615-7591
1615-7605
DOI:10.1007/s00449-023-02863-8