Loading…

Estimating the benefits of stream water quality improvements in urbanizing watersheds: An ecological production function approach

Streams in urbanizing watersheds are threatened by economic development that can lead to excessive sediment erosion and surface runoff. These anthropogenic stressors diminish valuable ecosystem services and result in pervasive degradation commonly referred to as "urban stream syndrome." Un...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2023-05, Vol.120 (18), p.e2120252120-e2120252120
Main Authors: von Haefen, Roger H, Van Houtven, George, Naumenko, Alexandra, Obenour, Daniel R, Miller, Jonathan W, Kenney, Melissa A, Gerst, Michael D, Waters, Hillary
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Streams in urbanizing watersheds are threatened by economic development that can lead to excessive sediment erosion and surface runoff. These anthropogenic stressors diminish valuable ecosystem services and result in pervasive degradation commonly referred to as "urban stream syndrome." Understanding how the public perceives and values improvements in stream conditions is necessary to support efforts to quantify the economic benefits of water quality improvements. We develop an ecological production framework that translates measurable indicators of stream water quality into ecological endpoints. Our interdisciplinary approach integrates a predictive hierarchical water quality model that is well suited for sparse data environments, an expert elicitation that translates measurable water quality indicators into ecological endpoints that focus group participants identified as most relevant, and a stated preference survey that elicits the public's willingness to pay for changes in these endpoints. To illustrate our methods, we develop an application to the Upper Neuse River Watershed located in the rapidly developing Triangle region of North Carolina (the United States). Our results suggest, for example, that residents are willing to pay roughly $127 per household and $54 million per year in aggregate (2021 US$) for water quality improvements resulting from a stylized intervention that increases stream bank canopy cover by 25% and decreases runoff from impervious surfaces, leading to improvements in water quality and ecological endpoints for local streams. Although the three components of our analysis are conducted with data from North Carolina, we discuss how our findings are generalizable to urban and urbanizing areas across the larger Piedmont ecoregion of the Eastern United States.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2120252120